G. Marot , R. Bennett EUROPEAN SYNCHROTRON RADIATION FACILITY BP 220 F-38043 GRENOBLE Cedex

1.INTRODUCTION

The total synchroton radiation power emitted by the E.S.R.F. Storage Ring dipoles reaches 1 MW under extreme conditions .

This power will be dissipated in two types of absorbers (ref 1) :

- low power absorbers , subjected to power densities less than 40 $\ensuremath{W/mm^2}$,

- high power absorbers (crotches) , with densities reaching 400 W/mm^2 .

This paper presents the methodology used to design the low power absorbers : in section 2, design principles and rules are described. An analytical model of the absorber thermal behavior is developed in section 3 :This model is necessary to study the influence of main parameters, in order to optimize the design. A comparaison with a numerical model for validation is given in section 4.

2.DESIGN PRINCIPLES.

2.1.GEOMETRY

The shape of the low power absorbers is illustrated fig 1 : an inner OHFC-copper slab , absorbing the power , is brazed on the vacuum chamber wall (316LN Stainless Steel) . In order to evacuate the heat , the outer face of the chamber wall is cooled by a water flow . Three water cooling devices are studied in this paper :

- tube cooling (fig 1.a) : a copper slab, with circular ducts for water flow , is brazed on the outer face of the wall .

film cooling (fig 1.b) : water flows in a flat channel, without any additional copper.
fins cooling (fig 1.c), expected to improve the efficiency of the configuration

1.b .
These types of absorbers have two main

advantages :

- water is outside the vacuum chamber ,

- no vacuum joint is needed .

Nevertheless , heat is transferred from inner copper to water flow through a Stainless Steel strip:the low thermal conductivity of such a material (17 W/m.C) limits the design to low power densities .

2.2.DESIGN RULES.

Several physical phenomenas limit the performance of the absorbers : - Degassing limits the maximum temperature to

350 °C .

- boiling of the cooling water occurs for

Fig lc : Fins Cooling

water/metal interface temperature higher than the boiling limit $\rm T_b.Vapour$ can then block the channels and stop the water flow $.\rm T_b$ depends on pressure : 100 °C at 1 bar , 150 °C at 5 bar . - restrained thermal expansion leads to thermal stresses; care must be taken to avoid : plastic deformation , brazing failure and fatigue . - a maximum thickness of 30 mm in normal incidence is required for a few absorbers , for photon beam position monitoring .

3.ANALYTICAL MODEL OF ABSORBERS THERMAL BEHAVIOR

An analytical model has been prefered to numerical models for 3 reasons :

- the geometry is simple enough ;

- calculations are very fast : it is easy to find the optimum value of a parameter ;

- the total water flow rate for the storage ring is limited : one absorber cannot be dimensioned independantly from the others . Analytical models are well adapted to a global analysis of all the absorbers , with imposed local (for each absorber) or overall (such as total flow rate) conditions .

3.1. ANALYTICAL MODEL.

3.1.1.ASSUMPTIONS.

```
- Steady state ;
```

- Uniform beam power over a rectangular impact $l_x \cdot l_z$ (l_z in the vertical direction , l_x in the horizontal direction) ;

- because to $l_x >> l_z$, conduction in the x-direction is ignored . The temperature field is then purely bidimensionnal : T(y,z) ;

- natural cooling , at least 100 time smaller than water cooling , is neglected ;

- the brazing joints are perfect , and thin enough to avoid temperature drop .

- constant thermal properties (thermal conductivity(W/m.C) : copper : 386 ; Stainless Steel : 17).

Calculations are divided into 6 elementary parts : inner copper , stainless steel wall , tube cooling , film cooling and fins cooling. The global model is then evaluated .

3.1.2.INNER COPPER.

Geometry and notations are given in fig 2 .

The action of the other elements of the absorber is condensed in a transfer coefficient ${\rm h}_{\rm C}$ on the Copper/Steel interface .

The 2-D analytical solution is obtained by a separated variables method (ref 2). The maximum temperature T_1 (at centre of beam impact) is expressed by :

 $T_1^* = f$ (Bi, $\frac{L}{e_1}$, $\frac{l_z}{e_1}$)

with :

$$T_{1}^{*} = \frac{k_{c} (T_{1} - T_{a})}{P_{1}}$$
 $Bi = \frac{h_{c}e_{1}}{k_{c}}$, Biot number

(k_c is the copper thermal conductivity, T_a is the water temperature, P_1 is the beam power per unit l_x (W/m)).

*influence of absorber height L : due to lateral (in z-direction) conduction in the copper , T_1 decreases as L increases .For L higher than L_{max} , this effect becomes negligible , and T_1 remains at its minimum value $T_{1min}.$ It is useful to know L_{max} : it gives the lowest temperatures for the minimum absorber height . With practical values of Bi , L_{max} is 10 to 20 times higher than the copper thickness e_1 .

*influence of thickness e_1 : for small height L,lateral conduction is small , and T_1 increases with e (this is a classical result in 1-D conduction , corresponding to $L=l_z$).At the other extreme , for $L > L_{max}$, lateral conduction is important , and increases with e:

therefore , ${\tt T}_1$ decreases with a thickness increase .

3.1.3.VACUUM CHAMBER WALL .

Heat conduction in the chamber wall is almost purely monodimensional . Temperature gradient from the inner face (mean temperature: T_2),to the outer face (mean temperature: T_3) is simply expressed by :

$$\frac{(T_2 - T_3)}{P_1} = \frac{e_2}{k_{ss} l_z}$$

(e2:vacuum chamber wall thickness;k_{SS}:Stainless Steel thermal conductivity).

The wall should be , of course , as thin as possible : nevertheless , it seems to be difficult to decrease its thickness , even locally , under 1 mm .

3.1.4. TUBE COOLING.

Conduction in the outer copper , and convection between copper and water are successively calculated .

-conduction :

The solution is extrapolated from an infinite number of tubes (ref 3), to a finite number of tubes : N (fig 1a).Calling T₃ the mean temperature of the interface steel/copper , and T_w the mean temperature of tube walls :

$$\frac{(T_3 - T_w)}{P_1} = k_c \frac{\log\left(\frac{21}{\pi g} \sinh\left(\frac{2\pi x}{1}\right)\right)}{2\pi N}$$

(\emptyset : tube diameter ; l : distance between tubes axis ; x : distance between tubes axis and copper/steel interface).

It can be then deduced that :

*the tubes must be as closed as possible to the steel;

*the efficiency increases with the number of tubes . Nevertheless , this influence is not linear : for typical geometries , using 3 tubes rather than 2 tubes increases the efficiency of 30 to 40 % ; the efficiency is again 10 to 20 % higher by using a fourth tube , and the influence of additional tubes quickly becomes negligible .

-convection : The exchange coefficient between copper and water , h_a , is calculated from Dittus-Boelter empirical correlation , valid for turbulent flow (ref 3):

 $Nu = .02 \text{ Re}^{.8} \text{ Pr}^{.4}$

Nu , Re and Pr are the classical Nusselt , Reynolds , and Prandtl numbers , calculated with the hydraulic diameter \varnothing . Therefore :

$$\frac{(T_{w} - T_{a})}{P_{1}} = \frac{\varphi^{.8}}{\pi N^{.2} h_{0}(T_{f}) Q^{.8}} \qquad T_{f} = \frac{T_{w} + T_{a}}{2}$$

The influence of the number of tubes on convection efficiency is almost negligible : it is the result of a competition between the increase of cooling area with N , and the decrease of transfer coefficient (for a given flow rate).

3.1.5.FILM COOLING .

In this case , $T_3 - T_w$.Exchange coefficient h_a is estimated from tables given in ref 3 , for flow between parallel plates . Energy conservation gives here :

$$\frac{T_{w} - T_{a}}{P_{1}} = \frac{L^{2} e_{3}}{h_{1}(T_{f}) Q^{8}}$$

The cooling efficiency decreases with a film thickness increase , due to water speed decrease for a given flow rate.

3.1.6.FINS COOLING .

A typical design is given fig 3 .

- convection : in such a complex geometry , exchange coefficient $h_{\rm a}$ is not easy to evaluate; locally , the flow is film like : thus , the correlation of previous section has been used , with the hydraulic diameter :

 $D_h = 4 \frac{A_f}{p_w}$

 $A_{\rm f}$ is water flow area in a cross section , $p_{\rm W}$ is the wet perimeter :

$$\begin{split} \mathbf{A}_{\mathbf{f}} &= \mathbf{e}_3.L - \mathbf{N}.\mathbf{h}.\mathbf{d} \qquad \mathbf{p}_{\mathbf{W}} &= 2\left(\mathbf{e}_3 + L\right) + 2.\mathbf{N}.\mathbf{h} \\ &- \text{ conduction : conduction between copper/steel} \\ &\text{interface and water is derived from the fin} \\ &\text{efficiency given in ref } 3 . \end{split}$$

$$\frac{\mathbf{T}_3 - \mathbf{T}_a}{\mathbf{T}_a} = -----$$

$$h_a p \left(1 + \frac{d}{p} \left(\frac{th(m) + n}{n(nth(m) + 1)} - 1\right)\right)$$

where :

P₁

 $n = \sqrt{\frac{h_a d}{2 k_c}} \qquad m = \frac{2 h}{d} \sqrt{\frac{h_a d}{2 k_c}}$

(the temperature drop between the copper/steel interface and the fins bases is small , and is not taken into account in the above formula) . For a given flow rate, the cooling

efficiency results from a competition between 2 phenomena :

- h_a decreases with fin length increase ;

- for a given h_a , the fins efficiency increases with fin length h.

A computation of the previous formula , for typical values of parameters , shows a optimum fin length h from 1 mm to 2 mm .

3.1.7. GLOBAL THERMAL MODEL .

From sections 3.1.3. to 3.1.6. , the exchange coefficient h_c defined in section 3.1.2. is deduced (h_c represents the global effect on the back face of the inner copper):

$$h_c = \frac{L P_1}{T_2 - T_a}$$

 ${\rm T}_{\rm l}$ is then calcultated with formula of

section 3.1.2. . $T_{\rm W}$ (useful for the boiling limit) is estimated by the same method . A few approximations have been made in the analytical model . Their validity must be checked by a numerical model .

4.FIRST RESULTS . NUMERICAL VALIDATION .

In order to validate the approximations of the analytical model , the Finite Elements Software MODULEF has been used (ref 5) in the case of tube cooling , with the following parameters : - photon beam : $P_1 = 15 \text{ W/mm}$; $l_z = 1.25 \text{ mm}$. - inner copper : $e_1 = 2 \text{ mm}$; L = 10 mm; - vacuum chamber wall : $e_2 = 1 \text{ mm}$; - cooling tubes : $\emptyset = 2 \text{ mm}$; number N = 2; x = 2 mm; Q = .15 m³/h; $T_a = 20 \text{ °C}$. Results are given in the following table:

	analytical	numerical
T1(°C)	204	202
T _w (°C)	73	68-76

The difference between both models is quite acceptable .

From this case , an increase of absorber height L from 10 mm to 30 mm leads to lower temperatures : $T_1 = 166$ °C . It is still possible to reduce T_1 by increasing inner copper thickness e_1 from 2 mm to 4 mm : $T_1 = 159$ °C . Greater thickness does not lead to significant improvement .In any case , T_w stays unchanged .

Using a 1 mm thick film channel instead of 2 tubes improves this situation : $T_1 = 135$ °C, $T_W = 57$ °C, but higher flow rates are necessary to avoid laminar flow : $Q = .3 \text{ m}^3/\text{h}$. Adding 15 fins (h = 2 mm, d = 1 mm) and increasing the flow rate to .6 m³/h gives : $T_1 = 112$ °C

5.CONCLUSIONS .

An analytical model of E.S.R.F. low power absorbers has been developed . A numerical validation and first results are presented .

Similar work is being done for high power absorbers (crotches) , including mechanical behavior .

These models will be used as practical tools for design .

<u>References :</u>

(1). E.S.R.F. Foundation Phase Report .

(2). Ozisik : Heat Conduction . Wiley & Sons .(3). Rohsenow : Handbook of Heat Transfer Fundamentals . Mc Graw-Hill .

(4). Aide Memoire du Thermicien . A_3E_2Th . (5). Institut National de Recherche en

Informatique et en Automatique . Le Chesnay . France .