
1199 

ARCHITECTURE OF THE LEP APPLICATION SOFTWARE 

.Jean-Pierre Koukhouk 
C’ERN 

C’H-1’211 Geneva ‘23 

Abstract 

.4 thorough analysis of the requirements for application software 
is presently being done for LEP. To complement and unify this 
approach, a synthetic or generic model of the LEP control has 
been developed. The accelerator is viewed as an automaton with 
a limited number of rnacr~~opic states. Each state is represented 
by a data structure. The transition between states is actuated by 
tasks (application progralrl>i: they are grouped int,o families with 
similar functionalit.ies witl. respect to the rxiachine states. It is 
shown how this organizatii)~~ at t,rmpts t,o map the requiremerits 
of reliability, flexibility iln,l t~stendability into the LEP control 
system. 

1 INTRODUCTION 

.4 significant effort is prc.s;t-ntlj- in\-estrd in the specification of 
the application programs urcessnry to operate LEP. This paper 
describes an architectllrr integrating them in a consistent entity. 
The first aim is to enforce s~str~matics in the operation of LEP 
which should result in an illll)rovt~i ctficirnry, reliability and Rex- 
ibility Several of the prillciplrs proved their value in the field 
when operating the (‘ERN-ISR. Tl Ie set-and ainl is to define at 

an early stage the data strut-turrc which interface the application 
programs. 

2 OPERATION REQUIREMENTS 

There are basically three modes of operation, each defining some 
specific requirements : 

1. The rommissionning/start-up/maintenance mode requires 
easy access to individual hardware or data modules and the 

ability to quickly write small programs. This is best handled 
following the principles of the SPS control system [I]. 

2. The machine studies reql~ire mainly flexibility : 

l the ability to invoke on-line the LEP nlodels to modify 
important parameters, in a controlled way. 

l an efficient storage and retrieval of measured data. prop 
erly tanged wit II wllillevrr information is necessary to 
interpret them. 

l the logging of t11tb ~ll,~c.hinr~ r~ol~~tion to help undcrstand- 
inK the ohservatiolly 

3. The luminosity product ir)n requires efficiency and reliability 
These are achieved not ~)nly by the quality of the software but. 
even more by the minimization of the consequences of hard- 
ware,‘softwarejhurnan errors. Indeed, together with the lin- 
ited capabilities of predicting the luminosity and background, 
these errors are responsible for the “inertia” in changing pa- 

rameters related to the significant learning period. 

In order to act on all these aspects. it is necessary to reduce 
complexity, to have fault-tolerant operation and to facilitate 

recovery : 

. 

. 

3 

operation should be modular at a higher level than a 
program: LEP operation can be viewed as an automaton 

making transitions between a small number of important 
states; these states are reflected in data structures, that 
may be pointed at, archived,.. 

Three instances of the machine states should be consitl- 
ered simultaneously : what a state should be (Reference). 

what it is (Current ) and what it would be (Target) if cnl- 
culated corrertions would be applied.This allows a sys- 
tematic separation of computations from control arid prim- 
vidrs a wide spectrunl for checks and recoveries. 

CLASSIFICATION OF APPLICATION 
PROGRAMS 

In order to fulfill the operation requirements. the data must sys- 

tematically be separated from the programs. On figure 1 the 
data are grouped so as to emphasize three classes of application 
programs which have different roles. 

l the real-time applications programs direct.ly interact with the 
LEP hardware or with t,he data structures describing the ma- 
chine states. They must fulfill the requirements of efficiency 
and reliability. 

l the model programs are accelerator physics programs which 
predict accelerator and beam parameters (Reference states). 
They must be general and expandable to provide the required 
flexibility. It is intented for LEP to use LIAD [2] for the 
optics. 

l the study programs allow the progress of accelerator physics 

applied to LEP. This is usually referred as modelling. They 
need not conform to any standard; they can only interact with 
some well-defined data-st,ructurrs to avoid any interference 

with thta real-time processes. 



1200 

.~~:~:~~~~,~~lI)[~ 
cc MF r‘l Nf3T 

I 
I 
I 
I 
! 
, 
I 
, 
I 
I 
I 

I 
I 
I I. CF 
I 

I 
, 
t 
I 
, 
, 0 

, 
, Mo.5URm/JKEAD 
I PARAMEtERS 

:;tud) 1~0 rcmb 
(mode irq, j f- y 

M~:dei program:-; I Red-time: application 
I 
I prqrarnri 

f ------------------,.--------------------,-----~- ----------------- 
I 

day1; 1 s to mn I rns tc> 9 
, I 

Figure 1: classification of application programs 

The purpose of this classification is economy : it shows that only 
a subset of the application programs the real-time ones - require 
a strong organization and hence an added complexity in the im- 
plementation. There is more freedom for the other programs. 
Unity is guaranteed by the interface to common data structures 
and probably by a standardizatiou of the man-machine interface. 

4 ARCHITECTURE OF THE REAL-TIME 
APPLICATION PROGRAMS 

The architecture shown on figure 2 embodies the major operation 
phases and the data structures necessary to fulfill the require- 
ments defined so far. 

1. In the data preparation phase, the Reference sequence of 
states is either created or reloaded from the archives; the LEP 
model is invoked for Twiss parameter calculation,... which 
become part of the states. The resulting data structure is 
called the Reference Data Set. It, remains unchanged unless 
a learning mechanism is activated. 

2. The hardware control function is dedicated to set- 
tings/readings and measurements; its inputs are found in the 

Reference Data Set in case of stable operation. Its outputs 
define, at least partially, the actual nlachine states. They are 
stored in the Current Data Set. The information unit being 

a state, any measurement is bound to a description of the 
accelerator; this ensures that it can be correctly interpreted. 
The Current Data Set furthermore keeps track of state mod- 
ifications. 

Check of the transition TIIIP~ is don? at this stage to prevent 
errors. 

3. The “feedback” loop processes information from the Current 
Data Set and produces target states (e.g. tune shift) stored 
in the Target Data Set. The target states not only consist in 
increments to controllable parameters but equally in predic- 

tions of beam or machine parameters. 

The hardware control function finds then its input in the Tar- 

get Data Set. Facilities are foreseen to select a specific state 
in the Target Data Set, display its corresponding predictions. 
scale the increments by a factor or carry knob-driven control. 

4. The learning mechanism allows modifications of the Refer- 
ence Data Set. for example when better performances are 
achieved in one run; this is especially interesting for machine 

studies. 

If a definite improvement is achieved, it may be archived for 
use by later runs. In this case, the preparation phase is re- 
duced to the reloading of the Reference Data Set, or even to 
nothing in case of stable operation. 



1201 

N.C:CLERATOR 
DESCKIFTION 

----. .~//-y--.--‘-., 

Hordwwe ir1tsrfocp-J I /5Y/s\‘\ 

Figure 2: architecture of application programs 

5. .4 sophisticated access mechanism to the archives is being 6 ACKNOWLEDGEMENTS 
developed [3], based on associative search, in order to fully 
exploit the accumulated information and to allow the man- I would like to thank my colleagues of the LEP Application Anal- 

agement of this large volume of data. ysis working group and especially J. Poole for their comments. 

The concepts developed should make it easy to trace the devel- References 
opment of a run, allow to go back in the sequence of states or 
state modifications, or even to restart from the Reference Data :l] M.C. Crowley-Milling, CERN 75-20, Dec. 1975 

Set. Operation efficiency and flexibility should thus be improved. 
[2] E. Keil, F.C. Iselin CERN/LEP-TH/85-15, 1985 

5 CONCLUSION [3] J. Poole, CERN-LEP Note 571,1987 

This architecture of the LEP application software has given a 
framework for the analysis of the individual tasks and has helped 
in the definition of the required data structures. The modularity 
introduced should equally allow a smooth transition from manual 
to automatic operation. 


