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Introduction

BESSY II is proposed as a low emittance electron
storage ring for the productisn of high brilliance
photon beams /1/. The nominal particle energy is 1.5
GeV., The storage ring lattice presents a tenfold
symmetry. Special features of the unit cell are the
low natural emittance of about 5+10°° rad-'m, the
long, dispersion free straight section of 5 m and the
achromatic bend consisting of 3 gradlent free dipoles
of equal length.

To support the design of the machine lattice we
have developed an analytical lattice approach. This
tool gives us a fast survey of all possible lattice
solutions, which satisfies the required lattice prop-
erties, This approach 1is done in the kick code ap-
proximation and considers only the linear lattice
behavior, It 1s supposed to optimize the linear
lattice structure as a starting point for further
detailed work on the lattice.

A general scheme of the unit cell is given in
figure 1. There are two symmetry points for each
plane of the beta functions, in the center of the
strajight section and in the center of the inner
dipole. Between the straight section and the outer
dipole we have a quadrupole triplet, between the
outer dipole and the inner dipole we have a quadru-
pole doublet,

For the analytical approach we subdivide the
lattice 1in parts and consider each section sepa-
rately. In this way we need to optimize only two
parts, the achromat, which is finally reduced to a
single doublet, and the triplet. For each part we
distinguish two sets of Twiss parameters. The first
type of these parameters are very important to define
the required lattice properties. The values of these
parameters at the boundary of the lattice sections
are discussed in the next two chapters. For each
kind of linear lattice solutions these values have
to be kept fixed.

The second type of Twiss parameters are less
constrained: they are not so strongly involived in
defining the desired lattlce properties. By changing
now the last type of Twiss parameters we will gener -
ate different lattice solutions, but in any case
with the desired lattice properties.

By applying the method of analytical betatron
matching /2/ we are able to calculate positions and
strengths of the gquadrupoles for a given set of Twiss
parameters at the boundaries. The calculation is done
in & direct way, without any iteration procedure.
Therefore the computer code is very fast and we are
able to consider all possible lattice solutions
within the kick code approximation.

The Achromat

We define the secticn of the achromat from
center to center of the two outer dipoles. The task
of this section is an achromatic bending and an
adjustment of the natural emittance to about 510 %
merad. This implies a special shaping of the hori-
zontal beta function, which is discussed in detail
elsewhere /3/. The results are summarized here.

Because of the symmetric lattice structure, the
analytic approach considers only the section from
the center of the outer dipole to the center of the
inner dipole. We only need to design the doublet in
between, The doublet is defined by the values of the
beta function at the beginning and at the end of
this section.

To obtain the achromatic bend, the value of the
horizontal beta function at the beginning (b1l) and
at the end (b2) of this section has to satisfy the
relation

2cos ¢ = -vb2/b1 ,

where ¢ is the hcrizontal phase advance across this
lattice part. This equation is valid for dipoles of
equal length.

The calculation of the minimum natural emittance
in the triple bend achromat (T3A) differs slightly
from the single dipole calculation, as dons by /s,
The emittance lixe function K

H=%Yn1% + 2ann’ + £ n'?

i{s conserved between the dipoles and therefore leads
to a coupling between the dipoles. A minimization of
the natural emittance in the TBA is dependent on this
coupling and gives the following conditions for the
horizontal Twiss parameters. We present results of a
double series expansion (obtained by the algebraic
computer code MACSYMA) with respect to the bending

angle © and with respect to the phase advance d¢ = ¢
- 180,

The mirimum of the beta function has to be local-
ized in the first dipole at

s = (/2)-T1-1/{10-Leos?s) + ...7,
where the dipole ranges from s = 0 to s = L. The best
cholce for the minimum of the beta function at this
point is given as

be = L+ YITO01/120 - de?/2888 « .. 7.

With this result
minimum value

the expression <H>/p takes the

<H>/p = (87p)® (V1707180 ~ d¢/26
+ 7 Y170de?/72040 + ...17.



The expression <H>/p = kK (0/p)? is proportional to
the natural emittance fn for a zero gradient dipole.

£, =k (R/p)7 YT - 3,823 10703 Fmerad!

Finally, x takes the minimized value

-

< = 0.0675

for the triple bend achromat with =zers gradient.
Compared to a symmetric two dipole achromat arrange-
ment ("Chasman-Oreen") cur k value is only 5% larger
/4/. Therefore, the same limit in the natural emit-
tance is achievable by a TBA or by a "Chasman-Green"
achromat if we distribute the same number of dipoles
around the ring. For a fixed natural emittance the
TRA results in a more compact machine than a "Chas-
man-Green" achromat solution.

However, it is not reasonable to build a machine
with these optimized numbers. The strong focussing
necessary to get such a small beta function would
produce too many chromatic effects. Therefore we
slightly increase the beta function value b, to 20
em instead of & em and adjust the phase advance to
10 degreas to get a natural emittance which i{s about
2 to 3 times the minimum value /5/. Also, we displace
the minimum of the beta function by few degrees from
its optimized location to meet the requirements of
the 160 degrees phase advance in a more relaxed way.

The study of the natural emittance in the TBA
gives us a clear picture of the constraints on the
horizontal Twigs parameters. In the vertical plane
there is no such restriction. We fix the vertical
beta function to a value of 10 m in the symmetry
point in order to reduce vertically the angular
divergence of the synchrotron radiation emitted in
the central dipole.

The task of the doublet is now well defined at
the beginning and the end of this lattice section.
In the analytical calculation of the doublet we are
now able to produce directly sclutions which are both
achromatic and of a low natural emittance. There is
still some freedom for the beta functions, mainly in
the wvertical plane. Changing the values at the
toundaries or the phase advance will result in dif-
ferent beta functions tetween the dipoles. Here we
try to find optimal sclutions for placing the sextu-
poles.

The Triplet

The lattice section which we define as the
triplet starts at the middle of the straight section
and ends at the center of the first dipcle. The full
length of the straight section is 5 m supplying ample
space for placing the insertion devices. The value
of the beta function at the beginning of this part
is set to 2.% m for the vertical plane and to 10 m
for the horizontal plane, in order to minimize
interactions beftween the wiggler and the beam.

The section starts with a symmetry point, the
derivatives of the beta functions are zerc in both
planes. At the end of this section the Twiss parame-
ters are defined by the starting values of the achro-
mat section. Roth solutions are combined at this
point. In the triplet section the phase advance in
both planes is free of choice and iz is uged to
adiust the working point.
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In our analytical computer code the triplet is
treated as a doublet plus one quadrupole. The single
quadrupole has a fixed position at the end of the
straight section but its field strength is variable.
Again, the main task of the analytical approach is
the calculation of a doublet.

The Matching of the Beta Function

A part of the Twiss parameters (f,a, ¢) at the
boundaries of our sections are well defined by the
lattice requirements. We are now interested to find
all solutions of the placements and the field
strengths of the magnets which match the values of
the beta functions. Changing those beta functions
which are unconstralned will produce different solu-
tions.

The analytical tocl was developed for a quadru-
pole doublet in the thin lens approximation /2/. In
this approximation the doublet matrix is written as

18y (1 0 [1 8,0 (1 o (1 Ql) - (m‘, m o
Vo) \d, 1/ N0 1) \d, 1) Ao 1 Mz Moo

where the L.

i are xick
strengths.

are drift lengths ard the d,

The matrix m,

i3 can be expressed in terms of the Twiss
parameters

m, = ¥R,/B, (cosA¢ + a,8inAs)
my, =¥ B, 8, sinA¢

]

= [0 + a,a,) sinas + (a, - a)

cosA-j:]NB,B2

Mz

m,, = Y8, 78, (cosAd - a, sin A¢)
(if we apply this to a specific plane we add an index
v or h). Additionally we introduce a further abbre-

viation Migh * Mgy = 2 B30 Mijn C Mgy = 2 Sij- The

three lengths characterizing the doublet can be
computed in terms of the Twiss parameters by

Ly o= (32, - 1)/a,,
2y, = (ay; - 1)/a,,
L140,%8; = (s, + 8;,)/8,,

and for the two kick strengths we find

dy = {8y - £38,,)/8,

d, = (s,, 8,0/,

Additvionally, the choice of the Twiss parameters
is not completely free. They have to satisfy the
boundary conditicn

S1282:82, * 85,{a,, Nlay, - 1)

= 8z285, (8, - 1) + s5a,,(a,, - 1)

This set of bvasic equations can be further
manipulated to keep some more appropriate parameters
fixed, for example the overall length of the doublet,
In exchange we have to give up the free choice of one
of the Twiss parameters.
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A lattice solution
statement in the analytic
not of interest. For example, if the distance between
two magnetic elements becomes too small, or 1if the
beta function along the lattice section becomes toc
large, the solution will be skipped. Additionally,
some more information can be calculated by the pro-
gram, for example the chromatic effects of a lattice
saction. ¥inally, we come up with two programs, one
far the achromatic section and one for the triplet.
Effects of the dipoles on the beta function are
included.

{s discarded by a simple IF
computer code, 1if it 1is

Witn this analytic code we have a very fast tool
for a parameter scan of the defined achromat and
triplet solutions. We now can concentrate on other
lattice properties, as sextupole positions, chromatic
effects, maxima of beta functions, space for diag-
nostics and so on, For these last judgements a
simple graphic display of the calculated doublet and
triplet and its beta functions is very helpful.

To transfer these solutions to standard lattice
codes a thick lens optic is required., This is done by
a fitting procedure which fits a thick lens optic to
our boundary conditions and uses the results of the
ana.ytic parameter survey as starting values.

Nonlinear aspects

The linear lattice solution needs to be correct-
ed for chromatic effects. This is done by inserting
sextupoles into the achromat section. The sextupoles
will reduce the stable, transverse acceptance of the
machine, the dynamic aperture. One of the main as-
pects of a good lattice solution is a large size of
the dynamic aperture. The dynamic aperture is nor-
mally checked by a tracking routine. This is a rather
time consuming procedure.

As a fast tcol to distinguish between more or
less promising lattice solutions with respect to the
dynamic aperture, we apply the method of the distor-
tion functions as proposed by Collins /6/. This
analytical approximation calculates the tune shift
as a function of the square of the betatron oscilla-
tion amplitude. Only if this dependance is weak a
good dynamice aperture 1is feasible. Those lattice
solutions need a further careful check by a tracking
routine.

The formulas given by Collins are applied to our
sextupole arrangement and combined with our inverted

kick code program to give a fast, relative compari-
son of the amplitude dependent tune shift.
Conclusions

The analytical approach proposed here is tailor-
ed to a special light source lattlce, but a varia-
tion of this method can also be applied to study
other lattice configurations. This approach provides
a very fast, first parameter survey of possible
lattice arrangements. Additionally, for the given
beundary conditions it is possible to get a complete
scan of all possible lattice solutions. Each result
calculated in this way satisfies some of the most
important lattice goals, and one can concentrate on
other aspects of the solution. A systematic charac-
terization of ths most Important features of the
linear TBA lattice is given irn /5/.
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Figure 1: Scheme of the BESSY II unit cell.



