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Introduction 

BESSY II is proposed as a low emittance electron 
storage ring for the productian of high brilliance 
photon beams /l/. The nominal particle energy Is 1 .5 
GeV. The storage ring lattice presents a tenfold 
symmetry. Special features of the unit cell are the 
low natural emittance of about 5*10-’ rad*m, the 
long, dispersion free straight section of 5 m and the 
achromatic bend consisting of 3 gradient free dipoles 
of equal length. 

To support the design of the machine lattice we 
have developed an analytical lattice approach. This 
tool gives us a fast survey of all possible lattice 
solutions, which satisfies the required lattice prop- 
erties. This approach is done In the kick code ap- 
proximation and considers only the linear lattice 
behavior. It is supposed to optimize the linear 
lattice structure as a starting point for further 
detailed work on the lattice. 

A general scheme of the unit cell is given in 
figure 1. There are two symmetry points Por each 
plane of the beta functions, in the center of the 
straight section and In the center of the inner 
dipole. Between the straight section and the outer 
dipole we have a quadrupole triplet, between the 
outer dlpole and the inner dipole we have a quadru- 
pole doublet. 

For the analytical approach we subdivide the 
lattice in parts and consider each section sepa- 
rately. In this way we need to optimize only two 
parts, the achromat, which is finally reduced to a 
single doublet, and the triplet. For each part we 
distinguish two sets of Twiss parameters. The First 
type of these parameters are very important to define 
the required lattice properties. The values of these 
parameters at the boundary of the lattice sections 
are discussed In the next two chapters. For each 
kind of linear lattice solutions these values have 
to be kept fixed. 

The second type of Twlss parameters are less 
constrained: they are not so strongly involved in 
defining the desired lattice properties. By changing 
now the last type of Twigs parameters we will gener- 
ate dlf’ferent lattice solutions, but in any case 
with the desired lattice properties. 

By applying the method of analytical betatron 
matching /T/ we are able to calculate positions and 
strengths of the quadrupoles for a given set of Twiss 
perame:ers at the boundaries. T3e calculation is done 
in a direct way, without any iteration procedure. 
Therefore the computer code is very fast and we are 
able to consider all possible lattice solutions 
Within the kick code approximation. 

The Achromat 

We define t,he section of the nc?r:.lmat f-om 
center to cent.er of the two oiter dipoles. The task 

of this section is ar. achromatic bending anal an 
adjustmer.t nf the natural emittance to about 5*10-’ 
marad. This implies a special shaping of the hori- 
zontal bet,a function, which is discussed in det.ni 1 
elsewhere /?/. The results are summarized here. 

Because of the symmetric lattice structure, the 
analytic approach considers only the section from 
the center of the outer dipole to the center of the 
inner dipole. We only need to design the doublet in 
between. The doublet is defined by the values of the 
beta function at the beginning and at the end of 
this section. 

To obtain the achromatic bend, the value of t,he 
horizontal beta function at the beginning (bl) and 
aC the end (b?) of this section has to satisfy the 
relat ior. 

2cos 0 = -m , 

where $ is the hcrizonta? phase advance across this 
lattice pa-t. This equation is valid for djpoles of 
equal length. 

The calculation of the minimum natural emittance 
in the triple bend achromat (T3A) differs slightly 
from the single dipole calculation, as dono by /4/. 
The emittance lide function H 

” = ‘V 72 + 2n n n’ + E, n’? 

is conserved between the dlpolos and therefore leads 
to a coupling between the dipoles. A minimization of 
the natural emittance in the TBA is deper.dent on this 
coupling and gives ihe following condition.? for th? 
horizontal Twiss parameters. We present res:llts of R 
double series expansion (obtained by the algebraic 
computer code MACSYMA) with respect to the bending 
angle Q. and with respect to the phase advance da = 41 
- 180. 

The mir.imum of the beta filnction has to be local- 
ized in the first dipole at 

3 = (9~/~).r1-li(~o-~.cos’~~ + . ..l. 

where the llpole ranges from s = ‘3 to s = 9,. The best 
choice fzr the minimum of t,he beta fu,lction at this 
point is given as 

b o = 9,. J17ori/l23 d6”/?44P, + . . . 1. 

With this res$Jlt the expression (HZ/p t,ikes the 

minimum value 

<H>/p = :p./p)' ff%??/'lRO -- d$:?h 

+ 7 md6’/2040 + . ..I. 
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In our analytical computer code the triple% is 
tre?tcd 1s a doublet PIUS :?ne ‘jl;adruaole. -he single 
quadrupole has a fixed position at, the end of the 
straight section but its field strengt? is variable. 
Again, the main task of the analytical approach is 
t,he calculation of a doublet. 

The expression i!i,/p = k (o./P)3 is proportional to 
th,? natural emit,t.arce rn for a 7ero gradient rlipole. 

F n - k (S./p)’ Y’ * ‘1.831 IO-” rrn*radl . 

Finally, i takes the minimized value 

< : 0.06:‘” 

for the triple bend achrorrat with z:?r? gradient.. 
Compa-ed to 3 symmetric twc dipole achromat arrange- 
ment, ( ttCt,asman -C,reen”! cur k value is only 5% larger 
/hi. Therefore, the same limit in t,he nat.urnl emit-- 
tance is achievable by a TBA 0~ by a “Chasman-Green” 
achromat if we ilist,riblJte the same nllnber of dipoles 
around the ring. For a fixed natural emittance the 
TPA results in a more compact machine than a “Chasm. 
man-Green” achromat solution. 

However, it is not reasonable to build a machine 
with these optimized numbers. The strong focussing 
necessary to get such a small beta function would 
produce too many chr0mati.c effects. Therefore we 
slightly increase the beta function value b, to ?O 
cm instead of 8 cm and adjust the phase advance to 
160 degrees to get a natural emittance which is about 
? to 3 times t,‘ne minimum value /5/. Also, we displace 
the minimum of the beta function by few degrees from 
its opt.imized locat,ion to meet the requirements of 
the 160 degrees phase advance in a more relaxed way. 

The study of the natJra1 emittance in the TBA 
gives us a clear picture of the constraints on the 
horizontal Twiss parameters. In the vertical plane 
the-e is no such restriction. We fix the vertical 
beta function to A value of 10 m in the symmetry 
point in order to reduce vertically the angular 
divergence of the synchrotron radiation emitted in 
the central dipole. 

The task of the doublet is now well defined at 
the beginning and the end of this lattice section. 
In the analytical calculation of the doublet, we are 
now able to produce directly solutions which are both 
achromatic and of a low natlural enittance. There is 
still some freedom for the beta functions, mainly in 
the vertical plane. “changing the values at the 
boundaries or the phase advance will result in dif- 
ferent beta f u?ct ions between the dipoles. Here we 
try to find optimal solutions for placing the sextu- 

poles. 

The Triplet 

The lattice sect ion which we define as the 
triplet starts at the middle of the straight sectior. 
and ends at the center of the first dipole. The full 
length of the straight section is 5 m supplying ample 
space for placing the insert ion devices. The value 
of the bet,1 function at t,he beginning of this part 
is set to 7.5 m for the vertical plane and to 10 m 
for the horizontal plane, in order to minimize 
interac+,ions bet,ween the uiggler and the beam. 

The section starts with a symmetry point, the 
derivatives of the beta functions are zero in both 
planes. At the end of this section the Twiss parame- 

ters are defined by thr st,art!ng values of the achro- 

ma t section. Roth mlutions arc combined at, this 

p” i nt, , In tnc triPl+=t. section th? phasr’ advance in 

both planes irr free of choice an< ir is used t.11 
ad:ust the working point. 

The Matching of the Beta FLInctiOn 

A part of the Twiss parameters (t?,u, $1 at the 
boundaries of our sections are well defined by t)lc 
lattice requirements. We are now interested to find 
A 1 1 solutions of the placements and ‘he field 
strengths of the magnets which match the value:: :,f 
the beta functions. Changing those beta functions 
which are unconstrained wi:l produce different so!o- 
tions. 

The analytical tool wa.s developed for a qnadru- 

pole doublet in the thin lens approximation 121. In 
this approximation the doublet matrix is written ,as 

where the SJi are drift lengths ar.d the di are <.ick 

strengths. 

the T;iiss The matrix mij can be expressed in terms of 
parameters 

m II = JBz/B, (cosA$ + a,sinAj 

rn12 = J SirlA$ 

mz, = - [Cl + a,a,? sinAd, + (a, - a,) 

COSAOl /m 

m2 2 = JA,/B; (COS4@ - a2 sin At#l! 

(if we apply this to a SPectfic plane ‘we add an index 

v or h). Additionally we introduce a further abbre- 
viation m.. 

iJh + m:j, = 1J 2 a.., rr.. 1Jh - mijv - 2 sij. The 

three lengths characterizing the doublet can be 
computed in terms of the Twiss parameters by 

Q, = (az2 - ‘)/a,, 

I?, = (a,, - .)/a,, 

Q,+Q.,+Q, i !s,, + s,>:/s,. 

and for the two kick strengths we find 

d 1 = !S,> - Q3521 )/Q, 

d 2 = :a,, - e,s,, )/Q2. 

Additionally, the choice of the Twiss parameters 
iS not. completely free. They have to satisfy the 
boundary conditicn 

.s,za2ia,l + ~,,(a,, l)i?,, - 1) 

= S2ZaZ,(a,, - 1) + s,,a21!az2 - 1) . 

This set of basic equat ions ca? be further 
manipulated to keep some more appropriate parameters 

fixed, for example the overall length of the doublet. 
In exchange WC have to give up the free choice cf one 
of :he Twiss parameters. 
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A lattice solution 1s discarded by a simple IF 
statement, in the analytic computer code, if it is 
not of interest,. For example, if the distance between 
two magnetic elements becomes too small, or if the 
beta fiJnCtiOn Ilong the lattice section becomes to: 
large, the solution will be skipped. Additionally, 
some more information can be calculated by the pro-- 
g-am, for example t.he chromatic effects of a lattice 
sect, ion. 7;‘inally, we come up with two programs, one 
far the achromatic section and one for t,he triplet. 
Effects of the dipoles on the bet,a function are 
included. 

With this analytic code we have a very fast tool 
f3r a parameter zcan of the defined achroma: and 
triplet solutions. We now can concentrate on other 
latt,ice properties, as sextllpole positions, chromatic 
effects, maxima of beta functions, space for diag- 
nostics ald so on. For these last judgements a 
simple graphic display of the calculated doublet and 

triplet and its beta functions is very helpful. 

To transfer these solutions to standard lattice 
codes a thick lens optic is required. This is done by 
a fitting procedure which fits a thick lens optic to 
our boundary conditions and uses the results of the 
analytic parameter survey as starting vallles. 

Nonlinear aspects 

The linear lattice solution needs to be correct- 

ed for chromatic effects. This is done by inserting 
sextupoles into the achromat section. The sextupoles 
will reduce the stable, transverse acceptance of the 
machine, the dynamic aperture. One of the main as- 
pects of a good lattice solution is a large size of 
the dynamic aperture. The dynamic aperture is nor- 
mally checked by a tracking routine. This is a rather 
t 1me consuming procedilre. 

As a fast tool to dist,inguish between more or 
less premising lattice solutions with respect to the 
dynamic aperture, we apply the methcd of the distor- 
tion f,Jnctions as proposed by Collins /6/. This 
analytical approximation calculates the tune shift 
as a function of the square of the betatron oscilla- 
tion amplitude. Only if this dependance is weak a 
good dynamic aperture is feasible. Those lattice 
solutions neeil a further careful check by a tracking 
routine. 

The formulas given by Collins are applied to our 
sextupole arrangement and combined with our inverted 
kick code program to give a fast, relative compar i - 
son of the amplitude dependent tune shift. 

Conclusion3 

The analytical approach proposed here is tailor- 
ed to a special light source lattice, but a varia- 
tion of this method can also he applied to study 
other lattice configurations. This approach provides 
a very fast, first parameter survey of possible 
lattice arrangements. Additionally, for the given 
bcundary conditions it is possible to get a complete 
scan of all possible lattice zolut, ions. Each result 
calculated in this way satisfies some of the moat 

important lattice goals, and one can concentrate on 
other aspects of the 301ut ion. A systematic charac 
terlzation o: the most important features of t,he 
linear TtiA lattice is given ir. 151. 
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Figure 1: Scheme of the BESSY II unit cell. 


