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Abstract 

The particle motion in a circular accelerator structure 
with sextupoles close to 4th and 6th order resonances 
is studied with perturbation theory. It is shown that A 
refined method is needed to achieve good agreement be- 
tween perturbation theory and numerical simulation. 

1 Introduction 

The understanding of single particle dynamics in the presence 

of nonlinear forces is an important issue for future circular ac- 
celerators. Besides numerical simulations, the need for theoret- 
ical models is generally acknowledged. In particular it is nec- 
essary to develop analytical tools which can be used together 
with numerical simulations in order to determine single particle 
stability. One approach is the concept of isolated nonlinear res- 

onances [1,2,3]. A more recent analytical tool is the concept of 
the Lyapunov exponent [4] which, being determined by numer- 
ical simulation, allows early detection of instability. Another 
useful criterion for instability is the overlap of stabilized reso- 
nance islands as proposed by Chirikov [5]. 

Operating close to higher order resonances, perturbation the- 
ory does not give a good estimate for the onset of instability nor 
for the width of islands even in simple systems. The aim of this 
report is to present a method which considerably improves the 
results of perturbation theory. This can be demonstrated, for 
example, in the case of the most important nonlinearities in ac- 
celerators, the sextupole fields. The reason why sextupole fields 
are so delicate is that the average value of the nonlinear poten- 
tial vanishes so that there is no first order contribution to the 
nlllplltlldr depPll,L /I’ ‘,,,,P. l?hr proposed mrtlictd ov~‘rcon~cs tht. 
problems related to this fact. 

For the sake of clarity, we present only the case of horizontal 
betatron motion, and we have chosen a simple system, namely a 
linear lattice with just one localized (thin lens) sextupole. But 
we want to emphasize that there is no restriction in applying the 
method for more complex cases. 

2 Perturbation Theory 

we start from standard perturbation theory [It21 by consider- 
ing a nonlinear contribution to the Hamiltonian for a particle 
travelling around the accelerator: 

H = ;z” + ;kr2 + )r: klzn = H,, + H, 
n n 

Inserting the solution for linear motion 

Z(J) = ~zGco44b) - 4(O) + *P) (2) 

(where P(J),~(J) are p-function and betatron-phase advance) in 
the complete equation of motion, one obtains a canonical system 
of differential equations for the Courant-Snyder constants I, @ 

with H1 as a new Hanliltunian funrtilm. (The >ubcc~~pf 0‘ 
HI will be subsequently omitted ). The new Hamiltonian will be 
represented by a Fourier series (index q): 

H - 23 L;,q~ .I:2Fl(tn~tlrrC)o+y)e) (3! 
mm* 

hnmq = & j ds ( + ) (i)“” ~e~(-"~l*l-f~~Qo-~)el 

H,I,@J -+ K,J,$ (4) 

such that the new system Hamiltonian, K, depends only on the 
act,ion variable J where J is a ronstant of motion 

J’ z F.E = 0 + J = const. 
a+ 

(5) 

We assume that S and K have the form 

s = J* + 1 anmqJ~i2,r(m~+lmQo+n)e) (6) 
nm9 

h’ = ;z: k,,qIn/2F~(m~+(mQO+9)el~ 

nm9 

(where m = n,n - 2, . . . . 7 -n, --n; 0 = 27rsiL; L=Circumference; 
Qo= linear machine tune). Following the principle of perturba- 
tion theory, we look for a canonical transformation generated by 

s 

S, K and H are related by the Hamilton-Jacobi equation 

K -. H = M/b%. (5) 

In order to express this equation with one set of variables J, *‘, 

we expand the terms I n/z and e’m$ in H and K respectively in 

a Taylor series in terms of J and +, using the relationship: 

I = Lkijao, $ = aSjab. (8) 

Or<iering of the t ctnlh with t hr .a,,,<’ ,‘xp,,,< t,t mrl making II.< 

of linear independence leads to a relationship between the coef- 
ficients h,. k, (a will subsequently represent n, m, q): 

i(mQo + q)~o,PZ -- CI”* - h,)J”!2 
” ” 

(9: 

-*2,, ~‘k~~~J+ -,&?;;:/+,J!++ _ ,., 

(where tn - m” = m’, q - q” = 9’). Requiring that the neu 
Hamiltonian K has only terms with m = q = 0 or mQo i 
q z 0, (otherwise setting the coefficients k, = 0) and solving 
the remaining equation for the 0, by iteration corresponds tc 
the PoincarP-Zeipel [6; procedure as introduced into accelerator 
physics by Schoch[2], resulting in: 

,&,Jn12 = __ 1 
h J”fl a 

n n ‘(do+ q! 

+ 
+ c nlnN 2.??c-- 

a,,ml, 2 i(nml + q”)(mQo + q) -t II’ 

(10 
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~I:II. 1111. H;tllllltlIl~,all f’rl!lt.t;esll ~1~1, 11 / I- :ll.~ lll~r(lifi~.~l ‘1) r( 
plarlng Q0 in thr *esollilncr denonlinntor I,? th? artic,ll-tleprlidellt 

tunr (z(J). 
Ah usual. th<a sums over ihe F~ulirr contpout~ntc ‘I. (I’.(!” in 

tlit* rxpressions for S and K will 1 w carried out analyticiill~ 

leading t 0 

alld. 11, t!1r, I‘ilil’ 131‘ ‘“f,‘,, (I II 41r ?I, ‘* If_ fl, li irt tl’ 

,c’r’ t, iI,<. Hamilt<,iili,l, (‘11, ti1i~1<~1:?~ art’: 

\,: i,,J“ _ 
\‘ ir ,‘,,’ 1 \‘ Il)li” ‘i,, b.7”“” 2”: ,,, 

II “G 2 ( m”Q,, . q”) 
’ (111 

This procedure ii know11 to converge very slowly. ii consitlerablt~ 
i~nprovenxnt is achi?vt~tf by removing any i!,,,,,, terms from the 

second or&r sum rqn(9) if they appear. Tht-y can 1~ added to 
the l?f! hanti >i& of eqn (9). 

1 jJ777((2() + c ;h,,t,,J*‘: 1 ) + q)(T,,J,~‘~ (12) 11 II’ - 
Proceeding 1n this way. the resonance drnonunators in the cx- 
pression for the generating function contain, in addition t.o the 
linear tune, an actiori-depellderil. correction which we identify as 
the contribution to thr detuning terms in the new Hamiltonian 

K 

AQ z & I’* dOaK/8J :- c ;‘h,+,,J+ (13) 
n’ - 

In case of odd-order multipole fields isextupole, derapole,...) 

however, coefficients h,,oo do not exist and contributions to thr 
detuning appear only in 2nd or higher order terms according to 
eqn (11). Therefore it is necessary to consider 3rd order terms 
of t.he Taylor expansion eqn(9): 

n’(77’ - c --. 2 )m”?n “’ 
h,m,ucr,rrr J(“‘t”“+““‘-4);2 

8 Wi 
O’,O”,,,,f 

(where m=m’+ m”+-m“‘, q-=q’+ q”+ q”‘). Separating the terms 
with nt”’ : m, q”’ ~ Q (thus m’ 4 m” : 0 and q’ + q” L 0) from 
tlir triple bnlu. replacrs the left hand SItit. elf ?qIl (9) b:, 

i(dQo - z: 
n’(n’ ~ 2)m” 

h,xr,,,, J “““2” ‘) t ~)\Lo~J”‘~. (15j 
“‘0’) 27 ” 

The second order terms which now appear in the resonance de- 

nominator resemble ’ the detuning terms obtained in the second 
order terms of the Hamiltonian K. Equations (9.15) define a toll- 
tinuous fraction series for the coefficient 0, for each order of the 
Taylor expansion: 

-ha 
-+. 

4n = i(mQ t 1 c’h,,h,,,,‘2( m”Q $ z: c”h,,,,h,,,,,/2(n~““Q 4 .._ 

(16) 

At this point, we propose to replace the complicated continuous 
fraction series by the amplitude dependent tune Q(J), so that 
the generating function becomes 

ha -7 nlm” D * h rh I, 
.- 

0 (I .-$- ’ z i(mQ(J).+- 4) ba’ 0” -1- (m”Q(J[~q~ + ..., 

;(mQ(J) -t q) 
(17) 

For mQ(J) + p close to zero! we set no = 0 and obtain the 
coefficients of the new Hamiltonian function 

I;, = h, - c R’ml’.._. hm’h,:-.. 
a,,an 2 (m”Q( J) + $‘I 

+ ,_,. (18) 

_ _- ..--- 
‘There is hovxvrr a diff~rrnrr betwern thr correction of the tune in the 

~cs~nancc drnominetor and the correction of the tune obtained from the 2nd 
ordrr Hamiltoninn X. Thr two terms carry different factors n’(n’ 2)/2 and 
n’(n’ t n” 2),‘2 rrsprrtivrly. ThP physiral meaning nf this disrrepenry is 
not yri tkar 

z5Zi2(TII+ t d,,,,,(J)) S - J 0 -+ x g,&,,, J”’ -.- (19) 
.I”, 3i77(rnTQ(J’)) 

Ii -- \‘ k,,ooJ”‘” + 3: k,,,,,,J’li’ros(ni~‘, i- (mQo A q)P + &mqX2~) L-a II !I 

where k,,mp is formed by terms like 

1 “$: jL j”” ds’ds”~,,,,(s’)il,,,,~,,(s”) (2li 
n~,m’.n”,m” II $1 

c.oa(m”(d(s”) - $(a’) - rQ(J)) x ~-.~~~~- __-- ~~~ t mb(a’) - (mQo + q)8’) . 
sin(m”trQ( J)) 

and /I is h in eqn(3) without the exponential. If only one resonant 

term with mQo + q 2 0 has to be considered, the transformation 

generated by F = Ip($* a) 

A = J; cp = $ - A@; A = Q. + n/m 

(22) 

leads to the invariant Hamiltonian 

h’ = A . A + c k,ooA+ + ‘2 k,,,A”‘2co+nrg + #,,). (23) 
n n 

3 Investigation of 4Q,-, 6Q,- Resonan- 
ces Driven by Sextupoles 

The equations of motion defined by the Hamiltonian have been 
solved in the case of a linear lattic?, which is distorted by sex- 

tupole fields. The linear tunes Q. are near QI = 0.25 and Qz = 
0.1667.111 order to reduce the effort to evaluate eqns(19,20,21), 
a single sextupole is considered. 

The phase space trajectory near the fixed points is obtained 

by solving eqn(‘23) for K = Ka with respect to A = f(K,,vo) 
with 

Ko = K(Ao. PO); (24) 

(~‘K!~A)..~=A~.~=~~ = (aKIav)~=~o,w, = 0. 

Because the A-dependent tune is not known a priori, one has to 

start by using the linear tune in eqn(21) and obtaining a first 
order correction to the tune by 

47&Q(Ao) = jfdpdB(8K/‘8A),.i=ro (25) 

Inserting the tune Qo + AQ in eqn(21), new values for Ao!po 
and K. can be evaluated. This procedure converges rapidly and 
leads to final values Ao, K,,,AQ(Ao), S(J = Ao). Eqn (19) is 
then used to evaluate the distorted Courant-Snyder invaiiants 
and phases I, ip. 

The results for the motion in the vicinity of the l/4-integer 

and l/&integer resonances are presented in Figs 1,2 which shows 
phase space plots T’ = r’i? + TO versus r from tracking (dots) 

and from the analytical treatment (solid lines). Fig la shows the 
result using the PoincaGZeipel procedure just above Qo = 0.25. 



Figurr 4: Phase Space Trajectories Near the 1,‘6 Integer Reso 
nanccs, Comparison between Tracking (small dots) and the pro 

posed method( solid lines) 

Beyond the hyperbolic fixed points, all trajectories are un- 
stable whereas tracking predicts stabilized islands. The refined 
procedure yields the results shown in Figlb which shows remark- 
able agreement between theory and simulation even at extremely 
large amplitudes. Fig 2 shows the case near the l/6-integer 
resonance. This resonance is stable in our lattice because the 

resonance-driving term li,sq vanishes for Qo = l/6. Fig 2a. 
shows the result of the Poincarh-Zeipel procedure and Fig 2b 
shows the result of the proposed method for the l/6 integer 
resonance island domain. Comparison tith simulation shows 
excellent agreement, in contrast to the conventional method. 

4 Conclusion 

Perturbation theory can be used to predict to high accurac! 
the phase space structure in the vicinity of high order nonlinear 
resonances, excited by sextupole fields. 

The numerical effort to obtain such results can be rather 

large because the second order coefficients are t.he result of a 
double integral over the lattice. Esperially for very high order 
nlultipole errors, where many combinations of first order terms 
combine to higher order effects. the numerical analysis Inight be 
as (computer-) time consuming as numerical simulations. 

The method should be used for a more realistic estinlate of 
thr width of nonlinear resonance islands which in turn might 
be used to characterize the strength and the potential hazard of 
nonlinearities. Together with a more accurate calculation of the 
detnning coefficients, this should improve the analytical predic- 
tion of global chaos according to Chirikov’s overlap criterion. 
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Figure 1: Phase Space Trajectories Near the l/4 Integer Res- 
onances, Comparison between Tracking (small dots) and the 

Poincari-Zeipel Mrthod( solid lines) 
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Figure 2: Phase Space Trajectories Near the l/4 Integer Reso- 
nances, Comparison between Tracking (small dots) and the Pro- 
posed Method( solid lines) 
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Figure 3: Trajectories Near the l/6 Integer Resonances, Corn 
parison between Tracking (small dots) and the Poincare-Zeipel 
Method(solid lines) 


