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TRANSVERSE TWO-BEAM INSTABILITY AT LEP 

J. M. Wang 
Brookhaven National Laboratory 
Upton, New York 11973. U.S.A. 

The problem of the transverse instability of point-like 
bunches for two counter-rotating beams in a storage ring is 
formulated and solved within a linear approximation. Only 
localized cavities are included as source of the coupling 
impedance. The difference in the coupling impedances of 
co-moving and counter-moving bunches is pointed out. A 
secular equation for the transverse rigid bunch dipole instabil- 
ity is presented and is applied to phase I of LEP. 

hneodm 

Pellegrini and Renieri [l] investigated the problem of 
the longitudinal coupled rigid bunch instability for two 
counter-rotating beams in 1974, and their results were 
recently applied by Pellegrini [2] to LEP. In this note we 
shall do similar calculations for the corresponding transverse 
instability. As in the references above, we include only the 
localized cavities as the source of the coupling impedance 
[31. 

Cavitv Resonances 

The transverse dipole impedance Z(o) of a standing 
wave cavity coupling the co-moving bunches can be 
expressed as the sum of the cavity resonance contributions, 

Z(w) = xp+ 
1 

A w 1-iqk(w/w;, - wX/w) ’ 

= iCPJ;L A 1 1 1 
o-q+irA - w+o;i+iTl 1 ’ (1) 

where X is the resonance mode number, ok and qk are. 
respectively, angular resonance frequency and the quality fac- 
tor of the mode, T;c = w*/2q1, is the mode damping factor, 
and pL is the shunt impedance. Causality implies [4] that 
px 2 0. 

The transverse impedance z(w) which couples the counter- 
rotating bunches can similarly be written as 

Z(w)= iC rk 
[ 

PA _ d 1 (2) 
A co--m0;It iTx o+w*+ir;I 

The shunt impedance is, for the counter-moving beams are 
generally complex [5]. However, since LEP cavity is sym- 
metric longitudinally about the center of the cavity, 
& = f pk. The sign is determined by the symmetry pmperty 
of the EM fields corresponding to the resonance mode, 

Coherent Modes 

We study the coherent transverse rigid dipole motion 
of counter-rotating electron (e-) and positron (e+) beams in 
the storage ring, each beam composed of B equally spaced 
identical point-like bunches. The azimuthal position of the 
k-th bunch, k = O,l,...&-1, is given by 8 = --(001 - 2nklB) 
for the e+ beam and by 0 = o,$ - 2&/B for the e- beam. 

We assume that the only source of the transverse beam 
impedance is the standing wave cavities and that the change 
of the transverse position of a beam particle during a transit 
of a cavity is small compared to the betatron wavelength SO 

that the cavity can be treated as a thin lens. The position of 
the cavities are denoted by 8 = @, j = 1,2 ,... ,Nc, where N, 
is the total number of cavities around the ring. We also 
approximate the betatron amplitude function by a constant, 
P = RlQo, where R is the ring radius and Q. is the unper- 
turbed betatron tune. 

A coherent mode of the two-beam instability is character- 
ized by the cyclic mode number S, S= O,l,... B-l, and for 
each value of S, there are two coherent modes with the 
coherent tunes Q given by the following dispersion relations: 

Q -Qo=-i~x(~k~~], (3) 

where I, is the average current per beam, x = ec/(4nEoQo), 
E, is the beam enegy, and the effective impedances Z’s are 
given by 

NC 
q+.- = I: 3,+,-t 

)=I 

with 

E(j= I: z&+s; q=cz&+s exp[ti228i(ns+S)], 

$-i zjwQo~wol; z E meo)Wol. 
We shall refer to the first term on RHS of (3) as the co- 
moving contribution to the coherent tune shift and the second 
term, the counter-moving contribution. 

From M.(3), the total growth rate per unit average 
current, ato,, can also be split into co-moving and counter- 
moving parts, a, = a * 8, with 

a = x Real&); ‘iii=x iRea a ; 
c I (4) 

It is convenient to scale the cavity resonance parameters 
in terms of the bunch frequency : WI, E wlTB and M E TATS, 
where TB = 2nlw@ is the bunch period. Also, we set 
Qs P 27r(Qo - S)/B In terms of these variables, the effective 
impedances become 

Sd = -fF pi yi [cot~(Wji + Q, - iy;O - (vi -+ -yfli> 1, (5) 

z4 = -$ P;( Yii $&v;i, F*olf;i) - (vi -+ --vi) I> (6) 

where 

O&j) = exp(f i2Q09’ Ifr yJB&/n - i& (Q,- i-f), 

Y&x) = exp[i+(kB&hr - d)][cor+(vJ + Q, - iyj + i], 

and 4 is the smallest integer greater than f.B@/x. Obvi- 
ously, J.L! + cl! = 1. We allowed in these equations the possi- 
bility of the Tesonance parameters corresponding to the same 
resonance varying from cavity to cavity. 

The co-moving part of the growth rate per current can 
now be written as 

where 

(7) 
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A (w,q I= 
sinhy 

coshy - cos (w + Qs, - (w-j -w) 

We see that the two terms in Q are of opposite signs; this is 
a manifestation of the well-known fact that for a beam which 
consists only of co-moving particles, the slow waves make 
the beam unstable, while the fast waves damp the instability. 

It is more cumbersome to express the counter-moving 
contribution sii in terms of the resonance parameters because 
of those phase factors in E+. We shall find a simplified 
expression for B in the next section by using an approxima- 
tion which is appropriate for LEP. 

We estimate in this section the contribution of the RF 
system to the two-beam transverse rigid dipole instability at 
LEP. The storage ring parameters we use am given in Table 
1. 

Energy EO 20 Gev 

Ring Radius R 4243 meter 
Vertical Tune Qo 78.35 
No. of Bunches per Beam B 4 

RF Frequency f rf 352.21 MHz 
RF Cavity Cell Length 42 cm 
Vert. Rad. Damping Time rD 404.8 msec 

Table 1: Beam Parameters 

During LEP-Phase I, the RF system consists of 4 RF sta- 
tions, each station with 32 cavities, and each cavity in turn 
consists of 5 cells; 640 cells in total. 

We construct two models for our purpose. Ln either of 
these models, each cell is treated as an independent cavity 
and the coupling among cells is ignored; hence, N, = 640. 

In Model I, all cells are assumed to be identical; there- 
fore, the cavity resonance parameters WJ., qk, pi, and pk are 
independent of the cavity number j. The resonance parame- 
ters [6] are listed in Table 2. 

Table 2: RF Dipole Resonance Parameters 

The co-moving growth rate per current is then, from 
J%.(7), 

a = WW, XC A (%q d. 
A 

Before calculating the counter-moving contribution a 
from the second equation of Eq.(4), we have to evaluate 
Z+E:_. We recall that q is a sum of the cavity contributions, 
24, and Zi is in turn the sum of the resonance contributions. 
Since the resonance frequencies w*/2rr = 10’lsec and the 
closest distance between two cells is about 42 cm, the phase 
factor in Y, oscillates rapidly with changing j. Therefore, we 

keep only the @-independent part in the product E+Z._, and 
the result is 

27 - -$‘c ~@aJ2Mw3~ -+-- - 
1 

with 

A SE 
I-cos(\yA + Q, + iy3 

[cash YL - cm (wx + Qs )I2 
+ ( Wk-+ -w3. 

Now, a can be calculated by direct substitutions of above 
equations into the second of Eq.(4). 

We emphasize here that ignoring the oscilating terms in 
the product E+E._ is quite different from ignoring the oscillat- 
ing terms in E, and E... seperately, which was done in refer- 
ence [2]. We would obtain I% = 0 in the latter approximation. 

Landau damping is small compared to radiation damping 
for the coherent mode under consideration, we shall therefore 
condider only radiation damping. Recall from Table 1 that 
the vertical damping time 2, = 404.8 msec. 

The results of Model I are given in Table 3 in terms of 
the threshold currents l/(aro), l/@ro) and l/(afddTD). 

Table 3: Results of Model I -- Threshold Currents 
Per Beam (in units of mA.) 

We see from this table that ti tends to be greater than a. 
A notable example is that 2X/a = 10 for the mode S = 3. This 
can be understood by comparing the roles played by the fast 
a.nd the slow waves in these two contributions. We have 
seen in the last section that in the co-moving contribution, 

the slow waves enhance while the fast waves damp the 
counter-moving contribution to the instability. On the other 
hand, the fast waves as well as the slow waves may in fact 
excite the beam instability in the counter-moving contribu- 
tion. 

Now the more realistic Model II: We assume here, as 
we did in Model I, that px, pk and qx are independent of the 
cavity number j and that their values are as given in Table 2. 
However, the angular resonance frequency 07, is assumed to 
vary from cavity to cavity due to the construction errors [7]. 
Specifically, we assume that the value of w is distributed 
among the cavities according to a Gaussian probability func- 
tion, 

P ~(co~ = exp [-(WA - w~)2/2a&(aio~,), 

where ok = 10dw;co, and that different cavity resonances are 
not correlated. We take the value for We as given in Table 2 
as the value for 0110. 

We adopt the approach of reference [8] in estimating a; 
namely we take the nns value of Eq.(7): 

a = $$‘4 ~C(P0’dj~WWaJA (6~ 312. 
1 

An estimation of iX can be obtained by a slight 
modification of the Model I calculations. Instead of Eq.(8), 
we take here 

z+z- = -~N~,(P,y~2jdW~P~(W~)A(W~.Qh). (9 
k 
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This together with the second equation of Eq.(4) give E of 
this model. 

The results of Model II for LEP are given in Table 4. 

S l/( ar,) l/C i-D) w cLlo#%) 
0 0.553 77.1 0.549 
1 0.390 92.2 0.388 
2 0.553 336. 0.552 
3 153. 0.389 , 0.390 

Table 4: Results of Model II -- Threshold Currents 
Per Beam (in units of mA.) 

Comparing Tables 3 and 4, it can be noted that the co- 
moving contributin a is lower in Model II than in Model I 
by a factor of =1/K, as expected. Secondly, the counter- 
moving contribution i5i is completely negligible in Model II, 
even though it was quite important in Model I. This is due to 
a strong cancellation in the integral in Eq.(9); the integrand 
chages sign quite rapidly with changing 01. 

Conclutions 

There is a qualitative difference between the ways the 
counter-moving and the co-moving beams contribute to the 
two-beam rigid coupled bunch oscillations. The main 
difference is that while the effects of the slow and the fast 
waves tend to cancel each other in the co-moving 
contribution, they may reinforce each other in the counter- 
moving contribution. 

We treat each cell in LEP as an independent cavity; 
therefore, the effective number of cavities N, = 640. This big 
iV, introduces two sources of fast oscillation and hence a 
reduction in the counter-moving contribution. The first sauce 
is the time delay factor exp (+iB w/x) between the oppos- 
ing bunches. This factor oscillates rapidly with the changing 
cavity position Cy. The second source is the inevitable spread 
of the resonance frequencies from cavity to cavity due to 
construction errors. 

Assuming that all cavities have equal resonance parame- 
ters, the touter-moving conuibution to the growth rate is 
greater than the co-moving contribution even after the oscil- 
lating terns due to the time delay factor have been averaged 
out. The counter-moving contribution becomes negligible 
only when the variation of the resonance frequencies is taken 
into accout. 

For storage rings where the effective number of cavities 
N, is small, the effect of neither of these oscillations is 
important. Depending on the placement of these cavities, we 
can expect a dramatic enhancement of the two beam relative 
to the single-beam instabilities. 
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