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Abstract i%‘e investigate the consequences of the quantum 
fluctuations associated with synchrotron radiation in the disper- 
sive section of the final focus for a 1 TeV linear collider. 

A previous estimate [l] of the emittance growth in the bending 

plan? is generalized and used to improve t,he design of a flat- 
beam final-focus 5 ystem. We further discuss the uncompensated 

chromatic hehaviour of the downstream channel. with r?spcct to 
the quantunl induced energy spread. 

1 Introduction 

The final focus of any future e e + - linear collider in the TeV en- 

ergy range must reduce the tramverse dimensions of the two op- 

posing beams by a large factor. Since, after acceleration, the rel- 
ative energy spread in the beams is at least of a few per mil 
121. the luminosity of the collider could seriously be limited by 
chromatic effects. One way out of this problem is to replace the 
last quadrupoles by a plasma lens [3j, having a very short focal 
length. .A more practical alternative consists in the conventional 
chromatic compensation scheme, which makes use of magnetic 
sextupole families located in a dispersive region of the optical 

channel to ‘pre-correct’ the chromaticity associated with the last 
quadrupoles. In order to create the required dispersion. however, 
the final focus must contain some bending magnets which, owing 
to the high particle energy. can give rise to significant synchrotron 

radiation. 
In the extreme relativistic regime. a particlr wit,h Lorentz fac- 

tor y going through a dipole of length L and hendin radius p 

undergoes an average relative energy loss A E! E given classically 

b 
AE 2 3PeL 
--I 

E jy pz1 (1) 

where rC = e’/mc’ is the classical electron radius. On the other 
hand, the average number of photons Nph emitted by the particle 
is 

lVph = 
5 L 

zcxy ;‘ (2) 

with u = e’,‘fic the fine structure constant. For a particle energy 
of 1 TeV, a total dipole length of 80 m and a typical dipole 
field of 0.1 Tesla [I], corresponding to a bending radius of 3.3 x 
lo4 m, we obtain AEjE ‘cx low3 and Ar ph 2 50. Sinrr the average 
number of emitted photons is not very high. the effect. of quantum 
fluctuations can not be neglected: the next section contains a 
detailed calculation of the resulting increase in the phase-space 

volume occupied by the particles. In particular, WP consider the 
emittancr growth in the bending plane of a flat-beam final focus 
and the 11”anturn-incluced rnprgy spread (0~)~. The latter can 
be approximated by 

where the factor two is due to the fact that synchrotron radiation 
mainly consists of ‘soft photons’, while only a few ‘hard photons’ 

are effective in increasing the energy spread 1.51. Inserting the 
previous numerical values into Eq. (3), we obtain a quantum- 
induced, relative energy spread (~‘,GJ)*!E 2 3 x 10e4, which gives 
rise to uncompensated chromatic aberrations in the downstream 

optical channel. 
It is worth recalling that in a circular niachine the effect of 

quantum fluctuations is counteracted by radiation damping and 
therefore the beam distriblltion reaches a steady state after a 
few relaxation periods. To the contrary, in the final focus of a 
linear collider there is no damping of the transverse particle oscil- 
lations (because RF-cavities are absent and the photon emission 

is essentially in the same direction as the particle velocity) and 
longitudinal damping is usually very weak. This can be seen by 
comparing the reduction of the beam energy spread UE caused by 
radiation damping, which is of the order of OE u AE/E, to the 
quantum induced energy spread (“E)~. From Eq. (3) it follows: 

- 
AE - 

radiation damping b,cJ * - 
E &h “E --:- _ ------- h .-.-. 

quantum fluctuations (m)q - 2 E’ 
(41 

Since the relative energy spread ~E,‘E is of the order of a few 
per mil, while the square root, of AVOW can hardly approach ten. 
radiation damping effects can be neglected. 

2 Calculation of radiation effects 

iVe consider a magnetic channel whose central design trajrctor! 
lies in the horizontal plane. This plane will be referred to as the 
bending plane and the curvilinear abscissa s along the reference 
trajectory will be used as the independent variable. Then, in 
linear approximation, the channel is characterized by the transfer 
matrix Mjslso) which relates the particle phase-spacecoordinates 
I, at s to their initial values at s,,. For simplicity, we assume that 
there is no coupling between the horizontal and vertical planes: 
therefore we can limit our analysis to the four-dimensional phase 
space 

s, = (x.x’, 2) 6). 0 = 1,...,4 C.5) 

where JJ’ = drids is the slope of the particle trajectory in the 
bending plane, z is the longitudinal distance from the center of 

the bunch and 6 = AEjE the relative energy deviation. 
The phase-space region occupied by the particle beam around 

the central trajectory E, = 0 can bc drscribed by the 4 - 4 
envelope matrix R-0 defined b> 

R,,jl = “. s,,J‘,, ‘> ((ii 

whrrr tht- synlbol -’ b, d?ilctt<5 ilIi average over tllcs h<'ilII~ (Ii:, 

tribution. Then, starting from tile linearized Fokker-Planck aqua- 
tion and neglecting radiation damping effects, it can be shown 

[6,7j that the evolution of the beam envelope matrix is given by 
the following expression: 

R(s) = M(J~.F~)R(sO).~(SIS,,) c /‘ds’~~lials’)H~s’),~(n,.p’). (7) 
3,) 
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Table 1: Evolution of the normal-mode variables and tranfer matrix for the magnetic channel. 

where % is the transpose of .li and the matrix B is given by 

Bc,,! = b(s kL,b. (8) 

The function b(s) describe ;Ilr effect of the quantum fluctuations 
associated with synchrotron radiation in the dipole magnets and 
depends on the bending raflius P(S) of the reference trajectory 

c,=55- r,hc mz 
- 4.13 x 10-l’- 

24& (TTLC*)~ - (GeV)’ . 
(10) 

It is important to stress that, according to Eq. (7), the evolution 
of the beam envelope matrir R obeys a linear superposition prin- 
ciple: the final envelope matrix R, at s is the sum of the initial 

matrix 8, at so, propagated by the transfer matrix M, and of a 
quantum-induced matrix R, 

Rf = ii, + R,. (11) 

lnserting Eq. (8) into Eq. (7), tl q us uantum-induced contribution 
to the beam envelope matrix can be written 

(&Lo = l; ds’b(a’)Ma&+‘)M~4(+‘). 

This formula can easily be generalized to the case of a six- 
dimensional phase space with horizontal-vertical coupling and 
has the merit of expressing the effect of radiation fluctuations in 
terms of the transfer matrix M of the magnetic channel. 

For calculation purposes. it is useful to express the matrix N 
through the optical functions of the channel, i.e. the dispersion 
D(s) and the beta function ,5(s) in the bending plane. This can 
be done in two steps: WP first, introduce the betatron variables rd, 

zb and the synchrotron displacement z>, related to the original 
phase-space variables by thr linear transformation 

(13) 

and then we consider the rvolution of these normal-mode vari- 
ables along the channel. givcxn in Table 1. Here a = -/Y/2, 4 is 
the betatron phase advancrs from .sO to F and r is the correspond- 

ing dilation factor of the pnrticlr trajectory 

J ’ ds’ 
~(~,%) = ~ 

#,> Lq 3’) ’ 
IT( c. .3(j) ~- J [ ’ ds’ 1 w 1 (14) 

lib szis”l - p(s’) 

Let us remark that the dispersion funtion D(s) is uniquely defined 
by requiring that both D’ and l?” vanish at the interaction point 

of the collider 3 = s’. On th e contrary, even though Q’ = 0, the 
beta function ,0(s) depends on the initial value ,00 or, equivalently, 
on the final value 0’ at the interaction point and therefore it 
must be considered as associated with the particle beam rather 

than with the optical channel. Nevertheless, the transfer matrix 

M(&), w hich depends on the optical channel alone, can be 

expressed in terms of D(s) and p(s). After some algebra, it can 
be cast in the form shown in Table 1, where 

-(Xl+, * = arctan( 

31 _ D2 + (a$ + /3D’)*, 8 = arrtan (9). (15) 

,4t the interaction point the normal-mode variables coincide 
with the original variables and? since we also have ‘H’ = 0, 4’ = 0 

and y’ = l/B*, from Eq. (12) it follows that the quantum-induced 
growth of the main beam parameters can be written 

< x; > = C,$- ,/I’ ds $-$-l(s) COS’ (e(s), 

< XL’ > = $i I:’ ds s?l(s)sin’ ‘3(s), 

(16) 

(17) 

< 2,x; > = --C2 /I:’ da $#, R(s)sin@(s)cos+(s), (18) 

<2;> = Cz 1:’ ds $$+“(s-, s), 119) 

<6,z> = Cz L:’ da f$+: (20) 

with the phase-angle 9 defined by 

Q(3) = $(s*, s) - C+(s) = l” i& - arctan (yy, (21) 

3 Quantum-induced energy spread and 
emittance growth 

For a constant bending radius p, the quantum-induced energy 
spread given by Eq. (20) can be approximated by Eq. (3). The 

downstream optical channel behaves practically as an uncompen- 
sated chromatic system for this additional contribution to the 
original energy spread of the beam. Indeed, if the synchrotron 
energy loss of a particle differs from the average as a consequence 

of statistical fluctuations in the number and energy of the emitted 
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Figure 1: Sketch of the new flat-beam final focus design presented in Ref. 8. Each of the telescopes 2’1 and Tz has a demagnification 

factor of 6 in the horizontal plane and 18 in the vertical plane. while C, and cz are symmetric chromatic-correction cells. 

photons, the sextupoles do no longer compensate exactly for the 
energy-dependent focal strength of the subsequent quadrupoles 
and the effect is more prouounced for those fluctuations which 
occur after the last sextupole. 

A qualitative estimate of the maximum acceptable energy 
spread induced by quantum fluctuations in a flat-beam final focus 
can be obtained by requiring that 

q+ 
(22) 

where ,& is the vertical beta function at the interaction point and 
f the focal length of the last quadrupole: this is approximately 
the chromatic limit for an uncompensated system. In the flat- 
beam final focus of Ref. 4 we had 0; 2 1.6 mm and f ir 5 m, 
therefore criterion (22) shows that the quantum-induced, rela- 
tive energy spread of 3 x 10e4 computed in the introduction is 
very close to the chromatic limit for the vertical plane. The 
new flat-beam final focus design presented in Ref. 8 and sketched 
here in Fig 1 is in a slightly worse situation: it contains four 
dipole magnets 40 m long with a bending radius of 5 x lo4 m 
and the last quadrupole has a focal length of 3.5 III, yielding a 
vertical beta function at the interaction point j3, 2 0.4 mm. The 
corresponding chromatic limit is 1.1 x 10m4, while the quantum- 
induced energy spread is (cr~)s,‘E 2 2.3 x 1Cle4. However we will 
see that a more serious limitation of this new final focus design 
is associated with the emittance growth in the bending plane. 

Although the quantum-induced growth of the horizontal beam 

size, given by Eq. (16)) is the only relevant parameter affecting 
the luminosity of the collider, the effect of radiation fluctuations 
is customarily discussed in terms of emittance growth [l]. To 

this end, one defines the beam rmittance as the square root of 
the determinant of the brtatron envelope matrix. Then, recalling 
Eq. (ll), the final horizontal emittance sf is related to its initial 
value E, as follows: 

cf ;; t 5; + ‘,Zp. (23) 

where sq is the quantun-iiitluced emittance for a pencil beam 

2 
1 * 

P =<’ *; >. xi- -. --\_ SqI; ; ( (24) 

while, using Eqs. (IS)-( IX), the factor cp which appears in the 

cross-product term can t,(b written 

i I2 > 
q -P - 0’ 

+ $’ <: ,r;? >= (‘2 1;. ds &Q$w (25) 

If the slope of the betatron function at the beginning of a bend- 
ing magnet is negligible (i.e. cc0 N 0) and the betatron phase 
advance from 30 to s’ is an integer multiple of K, the quantum 
contributions to the betatron envelope matrix become 

< 2; > = . E5L5 C,? yT--- 
P PO [h+4-3)1~ (26) 

< z;” > = (27) 

< z& > = -c2 y[+-+-;j], (28) 

where 
D 

IL=+, 
L (29) 

In the case of the new final focus design of Ref. 8, Do and 0; 
refer either to the beginning or to the end of the bending magnets, 
because of the mirror symmetry of the chromatic-correction cells. 
Moreover 40 2 1 m is much smaller than L 2 40 m while u and 
u are either zero (for the outer dipoles) or of order one (for the 
inner dipoles. where the dispersion is large). Therefore, for an 
initial horizontal emittance F, 2 lo-i2 m, the contribution of Ed in 
Eq. (23) is negligible and the final emittance is dominated by the 
cross-product term, proportional to sp IU< zi > /p’: in each of 
the inner dipoles we have cp 2 8.6 x IO-‘* m, corresponding to a 
relative emittance growth of nearly a factor 3. However, owing to 

the dependence of sp on the inverse fifth power of p, this growth 
can be reduced to a more acceptable level for example by halving 
the bending field in the dipoles and by rematching the sextupole 

strengths. 
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