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A lumped-corrector scheme proposed for reducing the effects due 
to svstematic multipole components in the dipole magnets of the SSC 
is studied for its effectiveness with respect to & errors in the 
dipoles. We have developed a simple but general and powerful meth 
od for powering the correctors for any multipole. The method applies 
to any beam effect that is linear in the multipole strength. This method 
was applied to reducing the “smear” (beam emittance distortion) by a 
scheme using two correctors per half cell, one adjacent to the quadru- 
pole and one at the middle of the half-cell. The correction algorithm 
shows that the mid-cell corrector is generally more effective than the 
corrector at the quadrupole for both systematic and random et-mm. 
The smear was computed analytically for a ring made up of 320 cells. 
assuming the random skew and normal sextupole and octupole errors 
expected in the SSC dipole magnets. The effects of errors and coarse- 
ness in the corrector strengths were evaluated also. Particle tracking 
computations were used to check the analytic results. 

1, Introduction 

The lumped-corrector scheme proposed by Neuffert was shown 
to be very effective for correcting the svstematic multipole errors in the 
dipoles of the Superconducting Super Collider. We shah show that this 
corrector scheme can also be used effectively to correct the random 
muhipole errors. The criterion for systematic multipole et-rots is the 
amplitude- and momentum-dependent tune shift that they produce, 
whereas the limitation due to random errors is the “smear.” In spite 
of the different physical effects involved, it will be seen that the cor- 
rection algorithms for the two types of correction are directly related. 

2. The Correction Scheme 

Neuffer’s scheme conceptually used three lumped correctors per 
half cell, one inboard of each quadrupole and one in the middle of the 
half cell, which in the SSC contains six dipole bend magnets (Fig. 1): 
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Fig. 1. The conceptual “three-lumped-correctors-per-half-cell” 
correction scheme. B = bend, Q = quad, CM = mid-cell correc- 
tor, Cl and C2 = correctors before and after each quad. 

The conceptual “three-lump” correction scheme is not very different 
from the more practical scheme of two lumped correctors per half cell. 
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Fig. 2. The practical Neuffer scheme with two lumped correc- 
tors per half cell. 

In this scheme (Fig. 2) a single corrector CQ at each quadrupole 
replaces the two correctors Ct and Cz that straddle the quadmpole in 
Fig. 1. 

The virtue of the conceptual three-lump scheme is that it allows 
the correction of the ermm in all six dipoles of a half cell to be analyzed 
without the complication of intervening quadrupoles. Then it seems 
reasonable to combine the Ct evaluated for the errors in one half cell 
with the adjacent C2 (evaluated for the errors in the adjacent half cell), 
the total to become the CQ of the two-lump scheme. This combination 
of correctors C, and C2 into a single corrector CQ has been found to 
produce an effective correction scheme. 

We shall develop a simple but general and powerful argument 
that can be applied to a variety of effects pmduced by multipole errors 
in the dipoles of a half celL2 Consider an effect E linear in the mag- 
netic-field errors a(s) at points s and in the discrete set of correction 
fields p(s) evaluated at the end (~3 of the half cell. E can represent 
any of a variety of beam effects, such as tune shift, “smear” (to be 
discussed in section 4), or any other dynamical effect. The total effect 
E can be evaluated through an integral over the half cell of the form 

s, 
E = j [a(s) + p(s)] T(se - s) ds 

0 
(1) 

where T(se - s) represents the effect at se of a unit error at s. We now 
expand the transform T(s) in a power series in s 

T(s, - s) = To [ 1 + A, (se - s) + A2 (se - s)* + .I 

or its equivalent 

=To[l+B,s+B2s2 +.-.I (2) 

where To. A,, and B, are constants. Then the net effect E can be 
written in the form 

{ 

SC s, 
E= To j [a(s) + p(s)1 ds + Bt 1 [a(s)+ B(s)1 s ds 

0 0 

s, 
+ B2 J [a(s)+ B(s)] s2 ds 

1 0 
(3) 

If the phase advance over the half cell is small and if there are no 
strong focusing effects within the half ceil, we can expect rapid con- 
vergence of the series and terminate with the term quadmtic in s. 
Furthermore, we can set each of the three integrals equal to zero and 
thereby derive three conditions on the three corrector strengths o(s) in 
terms of the six known error strengths a(s). Note that in this method 
the constants To, Bt. and B2 need not be known. They will differ for 
the various effects represented by E (tune shifts, distortions, etc.). 

Setting the three integrals to 721-0 has a ready interpretarion.3 
The first integral 

TIa(s) + B(s)1 = 0 
0 

(4) 
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simply requires that there be no net angular deflection at the end of the 
half cell for a ray parallel the central orbit. The second integral 

:[a@) + p(s)] s ds = 0 
0 

(5) 

similarly requires that there be no net displacement at the end of the 
half cell. The third integral 

;;a(~) + p(s)] sz ds = 0 
0 

(6) 

is the first higher-order correction. 
Applying Eqs. (4), (5) and (6) to an ideal six-magnet half cell of 

length L, we derive the following formulas for the three cormctor 
strengths for any given multipole: 

~rL1=&[-83ar--41a~-llaj +7c4+13aj +7~] (7) 

~L~=~[7a~+13a~+7a~-llcy-4lag-83~] (9) 

where aj is the multipole error field of interest in the j* dipole magnet. 
For the nrh normal multipole, for example, a = 10-4 b,,Bo is the average 
field strength of that multipole at x = 1 cm in the magnet being con- 
sidered. l3ILr is the integral strength of corrector magnet 1, et cetera. 

The corrector strength formulas (7), (g), and (9) have some 
interesting features. The ermrs closest to each corrector am weighted 
the most, as is expected intuitively. However, for the end correctors 
Cl and Cz. the contributions due to errors in the the three farthest 
magnets are of the “wrong” sign. 

If the six errors ai are identical (the case of systematic errors 
with no variation), the three corrector strengths are in the ratios of 
1:4:1, the Simpson’s Rule ratio, as pointed out by Neuffer. For purely 
random multlpole errors in the dipoles, the average corrector strengths 
can be evaluated by summing the coefficients in Eqs. (7) (8) and (9) 
in quadrature. In this case the three average corrector strengths are in 
the ratios 1:2.02:1. These ratios point up the relative importance of the 
mid-cell corrector, for both systematic and random errors. 

The linear apertures of the SSC is dominated by the random 
multipole errors in the dipole magnets. The random errors are the 
principal source of “smear,” the rms variation of the first-order beta- 
tron “invariant” amplitude a.6 To test the effectiveness of the three- 
lump correction scheme for random errors, we calculate the smear7 due 
to the random sextupole and octupole errors (which dominate the 
smear in the SSC), with and without the correction scheme, including 
the case of errors, or coarseness, in the applied corrections. These 
analytic smear estimates are spot checked by tracking results. A 
simplified SSC lattice consisting of 320 “90-degree” cells (adjusted to 
give fractional tunes of 0.285 and 0.265) was used. 

For such a ring the square of the rms smear in the horizontal 
plane r: can be expressed to lowest order in multipole strength as a 
quadradc sum of terms as follows: 

( - & uff + s& & 1 A* 
+ (siu 4, + sib3 ut3 1 A4 

plus corresponding terms in successively higher powers in the betatron 
amplitude (A2(n-1)) if h&her order multipoles are included. ua. ob2, 

cd, and ob3 are the rms variances in the a2, b, a3, and b muhipoles 
components in the dipole magnets, In this calculation an equal hori- 
zontal and vertical amplitude is assumed, and it is expressed as the 
maximum betatron amplitude in each plane at the point of maximum 
beta. The calculation of the coefficients sxd, etc., for any lattice is 
described in SSC-95.7 There is, of course. a corresponding expression 
for the rms smear in the vertical plane ry. 

Since there am no cross terms in EIq. (lo), it is possible to iso- 
late the contributions to the smear from each component: 

r&d = sxa%2 A (skew sextupole) 

rd?JZ) = sxb2 ob2 A (normal sextupole) 

r&id = ha3 ~3 A2 (skew octupole) 

r,(b) = hb3 ob3 A2 (normal octupole) (11) 

In Eqs. (10) and (11). smear is expressed as a fraction, each o is in 
“multioole units,“4 and the betatron amplitude A in metem. 

Evaluating Eqs. (11) at A = 0.01 m and all u = 1 gives the smear 
per unit multipole strength.near the desired SSC aperture The results 
for three cases are shown in Table I: (a) with no correction applied, 
(b) with a coarse, or “binned” correction, and (c) with perfect three- 
lump correction. To represent coarse binning plus other errors, an rms 
error equal to 0.20 of the average corrector strength was assumed for 
each corrector. 

Table I. Smear contributions at 10 mm betatron amplitude per unit mula 
pole strength. 

Smear - x Smear - v 

Mulripole 
a2 

c- Perfect CONS.2 Perfec 
No Corr 3-lump 3-lump No Corr 3-lump 3-lum 
0.0342 0.0066 0.0024 0.0327 0.0064 0.0024 

b2 0.0287 0.0057 0.0022 0.0347 0.0067 0.002’ 
a3 0.0816 0.0214 0.0160 0.0801 0.0211 0.015E 
b3 0.0477 0.0096 0.0041 0.0453 O.COKl 0.003c 

These tables indicates that per unit-strength the random octupoles 
are more effective in producing smear than the corresponding sextu- 
poles at betatron amplitudes greater than about 5 mm. 

Next we consider the smear produced by the random multipoles 
expected in the SSC dipoles.* 

Table II. Expected rms variations of multipole errors in SSC dipoles in 
“multipole units” (I W4 Bu at 1 cm). 

“= 1 2 3 4 5 6 7 8 

a, = 0.70 0.61 0.69 0.14 0.16 0.034 0.030 o.am 
h = 0.70 2.0 0.35 0.59 0.059 0.075 0.016 0.021 

The smear contributions due to random decapole and higher 
terms have not been included because tracking studies indicate that 
the smear at betatmn amplitudes less than 10 mm in the SSC is domi- 
nated by the sextupole and octupole errors. The contribution to the 
rms smear from all the higher multipoles in Table II am shown by 
tracking studies to be less than 0.01 at 10 mm betatron amplitude. In 
Table III are the smear contributions at 10 mm betatron amplitude for 
U,Q = 0.61, ob2 = 2.0, oa = 0.69. and ob3 = 0.35 units for four cases: 

(a) no correction 
(b) coarse correction for only b2 
(c) coarse correction for only b and a3 
(d) perfect J-lump correction of 82, b, 83, and b 
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Table III. Horizontal rms smear contributions at 10 mm betatron 
amplitude with expected sextupole and octupole errors 

No Con: bzOdY handax 3-lump 

z 0.021 0.057 0.021 0.011 0.02 0.011 1 0.0015 0.0023 
a3 0.056 0.056 0.015 0.0110 
b3 

Total Smear 0.085 0.063 0.033 0.012 

We see that the smear caused by the expected random multipole 
errors an: dominated at a betatmn amplitude of 10 mm by equal contri- 
butions from the b and ag components. Thus, while there is an appre- 
ciable improvement in smear from correcting only the normal sextupole, 
the gain by correcting the normal sextupole plus the skew octupole is 
much more impressive. 

This analytic procedure for calculating smear has been well sup- 
ported by corresponding Monte Carlo tracking res~lts.~ In this study 
of the three-lump correction scheme, similar comparisons have been 
made. For example, in a single-cell system with only a random skew 
octupole error in the dipoles, the smear reduction by a perfect three- 
lump correction scheme was about 4.4 by the analytic method and 4.9 
It 0.8 by tracking using 21 different random seeds. 

An additional contribution to the smear is produced by the sys- 
tematic normal sextuple due to persistent currents if the correction is 
by lumped correctors. For a systematic normal sextupole of minus 6 
“units” at injection corrected by the two-lump scheme in the Simp- 
son? Rule ratio, the resultant smear is calculated to be 0.0148 at a 
betatmn amplitude of 10 mm. Adding this systematic contribution to 
the smear in quadrature to that due to the random multipoles given in 

Table III, the total smear for the two cases of coarse three-lump cor- 
rection become 0.065 (only b2 corrected) and 0.036 @ and a3 correc- 
ted). Thus the contribution of the persistent-current sextupole to the 
smear at injection is negligible with this correction scheme. 

This study has shown that the “three-lump” correction scheme, 
proposed by Neuffer for correcting systematic multipole errors, is 
effective also for correcting random multipole errurs. The random nor- 
mal sextupole and skew octupole errors expected in the SSC dipoles 
are the principal contributors to the smear in the SSC. If only the nor- 
mal sextupole is corrected by lumped correctors with coarse binning, 
the smear is reduced from 8.5 percent to 6.3 percent at a betatron 
amplitude of 10 mm. If in addition the skew octupole is similarly cor- 
rected, the smear is reduced to 3.3 percent. 
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