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Interactive First Turn and Global Closed Orbit Correction 
in the SSC 

Vern Paxson, Steve Peggs, and Lindsay Schachinger 
SSC Central Design Group* 

c/o Lawrence Berkeley Laborat,ory 
Berkeley, CA 94720 

We describe an algorithm for correcting the orbit of the SSC 
using closed bumps; an implementation of the algorithm utilizing 
a highly graphical user-interface, designed with portability in 
mind; and results from using the algorithm to correct lattices 
with simulated errors. 

Introduction 

An early step in storing useful beam in the SSC is achiev- 
ing a first-turn orbit. This is a non-trivial problem since the 
quadrupole misalignments are such that the rrn3 orbit deviation, 
without correction, would be 16 mm in the arcs! while the beam 
pipe is 16.5 mm in radius. The procedure is to first correct the 
trajectory so that the beam goes around the entire circumfer- 
ence of the ring, then to establish circulating beam, and finally 
to fine-tune the orbit with a global orbit correction algorithm. 
The task is complicated by the monitors’ limits of resolution and 
by displacement errors in the monitor positions. 

We address three aspects of a program we have developed for 
simulating orbit correction: the algorithm used, the graphical 

interface to the program, and the results of the simulation. 

Orbit correction is essentially a minimization problem, in 
which one computes the set of corrector strengths which will 

minimize the deviation of the actual trajectory from the desired 
trajectory. The algorithm described below breaks down the proh- 
lem of global orbit correction into a series of overlapping local 
orbit correction problems. Each of these can be parameterizrd 
so that to solve them involves minimizing a function of only one 
independent variable, which can be done in straight-forward fash- 
ion using a simplex method. 

Software for exploring and manipulating models, such as 
studying the behavior of the orbit correction algorithm and its 
simulated effects on the SSC, benefits greatly from a highly 
graphical user-interface.[I] With a visual way to interact with 
the model the user can much more readily build intuition and 
understanding as to how the model operates. We endeavoured 
to create such a user-interface to the orbit correction algorithm, 
and also to use this as an opportunity to explore ways to man- 
ageably yet effectively represent a model a.s complex as the SSC 
lattice. Furthermore, we took pains to design the user-interface 
software such that it is reusable, both by being modular to the 

extent that many components are generic and can thus be used 
in other interfaces, and by adhering to emerging standards so 
that the software can be readily moved to other hardware. 

There are several motivations for implementing the orbit cor- 
rection algorithm: to determine design requirements for the 
SSC’s dipole correctors, to help with the design of corrector COII- 
figurations for the interaction regions, to provide machines with 
corrected orbits for aperture studies, and to provide a more realis- 

tic machine model for studies of the correction of other errors. [2] 
The eventual goal is to realistically simulate injection into the 
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SSC with all known errors. We found that the algorithm is able 
to correct orbits in t.he presence of expected machine errors [3] tc 
a satisfactory degree, and below we summarize the corresponding 
design requirements. 

Algorithm 

We use an orbit-correction algorithm which is baaed on closed 
bumps. [4] Bumps are made using three correctors as shown ir 
Fig. 1. Each bump can be parameterized by a, its height at 
the central corrector. To correct a region of the accelerator one 
finds the set of bumps which minimize the difference betweer 
the actual orbit and the desired orbit, given constraints such E 
physical aperture size and maximum corrector strengths. 
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Figure 1. Structure of a closed bump. The triangles indicate 

correctors, the thin rectangle are monitors 

In general, the effect on the beam at a point s due to a kicl 
Ax: at i is given by 

AZ(~) =m(sinAd)Ar: 

Ax’(s) =v’?%%( cos AJ$ - (Y sin A@)Ax: 
(1 

where Ad = (b(s) -- Cp(i). 

If the bumps are clo.sed, that is, the effects of the bump are 
wholly localized to the area between the first and third correctors 

then 

,g3 v’i%Ax: (:t”,$) = 0 

for s outside of the blimp. Then the law of sines givcp: equation 
and using the law of sines yields 

x4x _- -.- -Ax{ = constant 
sin(dI - dk) 

where 2, j, k arr (1,2. 3), (2, 3. 1). or (3. 1. 3’). 



We now can use (1) and (2) to express the corrector strengths 
in terms of a, giving 

asin(41 - 43) 
Axr, =p;! sin(& - 42) sin(& - $1) 

A’ 
x3 =v?E&si~(d3 - 62) 

Since (1) gives the additional displacement for a monitor in- 
side a bump due to an additional kick at one of the correctors, 
and (3) expresses the kicks in terms of a, by combining them we 
can introduce a penally function, with a as the sole independent 
variable, which quantifies how close the beam trajectory within 
a bump is to the ideal trajectory: 

P(U) = c Wb(Xb - Xb*)2 + c %pc(&) 
b=BPM C=COIT. 

(4) 

where Wb is a weight associated with each monitor, w, a weight 
associated with each corrector, .Zb is the present monitor reading 
plus the change in position due to the bump, rb* is the desired 
reading at the monitor, and PC is a function which penalizes 
excessive corrector settings. 

Since P(a) is a function of only one independent variable, 
it can easily be minimized using a one-dimensional simplex 
algorithm. [5] With this simplicity comes the strong advantage 
that P(a) needn’t have a restricted form such as being quadratic, 
or even being particularly well-behaved (for example, P(a) can 
be discontinuous). In particular, the penalty function for correc- 
tor strength can be 

P,(xi) = klx:l, if IQ > rLmax; 

0, otherwise. 

for some large constant k. This function is quite cheap to com- 
pute, yet will prevent correctors from being set beyond their 
maximum strengths. 

The region of the accelerator to be corrected is divided into 
overlapping closed bumps, and then the penalty function for each 
bump is minimized in turn, incorporating the effects of over- 
lapping bumps in the Xb of (4). This iteration over the set of 
bumps is repeated until the change in the global penalty func- 
tion, G(al,...,a,) equal to the sum of the P(,i)y is less than 
some small e. At this point, since we minimize the P(u,) sepa- 
rately, we have dG(a,)/da, = 0 for all i, so we have arrived at a 
local minimum. 

The flexibility of this algorithm makes it quite appealing--it 
can correct an arbitrary region of the accelerator, both first-turn 
and closed orbit; since the solution generated is composed en- 
tirely of closed bumps, its effects are confined to the particular 
region of interest; the goal orbit can be any arbitrary trajectory; 
the penalty function can have non-quadratic forms, incorporat- 

ing effects such as maximum corrector strength and limits on 
monitor readings; both monitors and correctors can be weighted 
to emphasize or remove particular elements; it is stable in regions 
which have no BPM’s; and the algorithm is straight-forward to 
implement in software. 
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Graphics Interface 

We implemented a highly graphical user-interface for the or- 
bit correction algorithm, both to facilitate use of the algorithm 
and to explore ways of effectively displaying information about 
a machine as large as the SSC. 

The model we adopted was that of a bird’8 eye view, in which 
a top-view of the entire ring is shown in one window, and a 

selected, zoomed-in region of the ring shown in greater detail in 
another window (Fig. 2). Navigation (zooming in or out, shifting 
the region of interest) can be done in either window, with both 
windows updating to show the effects. The zoomed-in view shows 
the horizontal and vertical beam positions at each monitor (along 
with, optionally, the positions predicted by the orbit correction 
algorithm), and along the bottom appear blips indicating the 
position of individual correctors and monitors. These can be 
selected using the mouse to produce information on the element. 
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Figure 2. Graphical interface to the orbit correction algorithm 

The bird’aeye view showing the entire ring is on the right; the 

window on the left shows the area currently roomed-in on. 

The basic operation is to zoom in on the region to be cor- 
rected, correct the region using the algorithm, reinject, and ob- 
serve the resulting progress. In addition, the program can find 
the closed orbit, and allows for ready archiving of both any stage 
of the orbit correction process and statistics summarizing the 
distribution of corrector strengths that were necessary to correct 
the orbit. This is not an overwhelming amount of functionality; 
a key point here, however, is that due to modular design, adding 
further functionality (e.g., turning off bad monitors or correc- 
tors; diagnosing faults) is a straight-forward task. The difficult 
work-the basic design of the,graphics-is in place. 

In implementing the orbit correction algorithm and its graph- 
ics interface, we endeavoured to follow the tenets of sound, 
portable program design. [S] The algorithm itself is written in 
standard-compliant (with the exception of include statements) 
FORTRAN-77. While the lattice information and machine func- 
tions it needs happen to be provided by Teapot [‘I’], the imple- 
mentation of the algorithm is wholly independent of the model- 
ing program: it has no knowledge of any Teapot common blocks, 
and is isolated from the format of Teapot machine files. 

The graphical interface is written using the industry-standard 

X Window System, [S] which runs on a wide variety of computers 
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(DEC, Apollo, Sun, Masscomp, Apple, IBM PC, etc.; we used 
Sun workstations). We introduced a further level of graphics- 
independence by isolating the X-specific code in a package of 

library routines. The orbit correction user-interface is written 
solely in terms of these routines, and thus is insulated from 

changes in the underlying window system. 

The only coupling between the graphics and the orbit correc- 

tion algorithm is a set of interface routines which the graphics 
code calls to gather information to be displayed (such &s element 

types, positions, and strengths) and to run the orbit correction 
algorithm. This design keeps the algorithm fully separate from 
the particular graphics interface used to interact with and ani- 

mate it, and allows either to be changed without impacting the 

other. 

Simulation Results 

The algorithm was used to correct the SSC 90” injection-optics 
lattice. Five random number seeds were used to generate differ- 
ent sets of field strength and positional errors. The dipoles were 
assigned errors with standard deviations 0~0 = 5.9, ~0 = 8.5, 
u.,: = .72, ubl = .72, ua2 = .64, at,2 = .40, ug = .6 mrad, and 

u z,I = 1 mm. Multipole errors are in units of parts per 10e4 at 1 
cm. The quadrupoles were rotated with ag = .5 mrad and mis- 
aligned with cz,y = .5 mm. The distributions used were Gaus- 

sian, truncated at four standard deviations. In the simulation 
the monitors had a resolution 0 of 100 microns, with errors in 
the readings not exceeding 10a. The beam was injected on-axis 
and with no energy errors. 

The bulk of the study of the algorithm’s performance is lim- 
ited to the arcs, as the corrector and monitor configuration in 
the IR’s needs further study. In the arcs, there is a monitor posi- 
tioned 0.1 meters downstream from each quadrupole, and 3.285 
meters downstream from the monitor is either a horizontal or ver- 
tical corrector (for horizontal or vertical focussing quadrupoles, 
respectively). The monitors are misaligned with g = 0.1 mm 
with respect to the quadrupoles. 

The correction procedure was to steer the beam completely 

around the ring by progressively correcting the trajectory. The 
program then automatically found the closed orbit using tracking 

and binary search. The closed orbit was then globally corrected, 
the resultant closed orbit found again, and these two steps rr- 
peated until the rrn~ orbit errors were less than .4 mm (this never 

required more than two subsequent iterations). 

Table I: RMS orbit deviations III mm. ID is with respect to the 

design orbit, whik 28 is with respect to the center of tht RPM. 

Seed Xrms Km, X,, Lax 

1 8.45 8.53 20.63 19.95 

2 8.11 8.29 19.15 18.84 

3 7.68 8.06 19.99 18.14 

4 7.97 8.49 19.31 19.17 

5 8.50 8.16 19.41 21.59 

Table 2: Corrector strengths needed for final, 

corrected orbit, in /Brad 

Table 1 shows the rnls of the monitor readings in each plane 
of the final closed, corrected orbit. Two values are given for each 
plane, one with respect to the design orbit and one with respect 
to the center of the monitors. The values in the table include the 
monitor readings in the IR’s, which are not substantially different 
from those in the arcs. 

Table 2 summarizes the rrn~ and maximum corrector strengths 
needed in the arcs for the final corrected orbit. Slightly higher 
values were needed during the course of correcting the orbit. For 
the five seeds the greatest corrector strength ever needed was 
26.38 prad in the X plane and 26.20 prad in the Y plane. The 
design maximum corrector strength is 60 prad at 20 TeV. 

Peggs and Chao[9] have calculated the ma orbit deviations 
and corrector strengths for the 60” SSC lattice, for the linear ma- 
chine with no coupling. A similar calculation for the 90’ lattice 
with the errors used for this study yields an T~J orhit devia- 
tion with respect to the center of the beam position monitors of 
0.24 mm in both planes and an ems horizontal and vertical cor- 
rector strength of 7.6prad, in good agreement with the results. 
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