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Introduction 

A bunch of charged particles travelling in an linear or 
circular accelerating machine interacts with the 
surrounding structure inducing electromagnetic fields 
which, acting back on the bunch, influence its dynamics. 

The knowledge of these fields is necessary for the 
prediction of the energy lost by the beam and for the 
analysis of the instability phenomena. 

In this paper we study the fields induced by a dipole 
charge distribution crossing a discontinuity. An exact 
analytical expression of the longitudinal and transverse 
dipole impedance is derived by extending the analysis 
developed in Ref. 1 for the longitudinal case. 

Description of the problem 

Let us consider a point charge travelling off-center, 
wilh velocity V-PC, along the z-direction in the structure 
shown in fig.1. Let r0(r0,&,5c-0) be the position of the 
charge and r( r,z,9 ) be the observation point in 
cylindrical coordinates 
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.Fig. 1 The relevant Geometry 

The dipole current density corresponding to a displaced 
moving unity charge, in the frequency domain (-irot), is 
given by: 

J$r,z.B) - 2 - - _ e iaOz 6tr-r,) cos(gI 
n r 

(1) 

where % - o/@, and 6(x) is the Dirac function. 
Fields can be seen as generated by the source current 

(11 and by the induced currents on the perfectly 
conducting surrounding walls. The unknown current 
flowing on the discontinuous pipe can be written as : 

,f (r,rJ) - ; qy code) 
2n 

where f(z) is the only unknown function of our problem, 
to be determined 

We first solve the wave equation for the Hertz 
potential where the forcing terms are the given by the 
current densities ( 1) and (2): 

v’nf (r,z,B) + k* II: tr,Lg) 

where k&c and Z, is the vacuum impedance (120nR). 
The electric field is related to the Hertz potential by: 

E(r,z,Ol - V(V4I) + k*Il 

Since the currents flow toward the z-direction we 
have used in eq. (3) the sole z-component of the Hertz 
potential which is sufficient to derive the fields excited 
in the pipe complex.. The presence of the outermost pipe 
is taken into account by imposing the proper boundary 
conditions TIx -0 at the surface r-d: 

The linearity of the wave equation allows potential II2 
and fields to be thougth of as sum of two terms 
corresponding to the source currents ( 1) and (2). 
The electric field due to the dipole charge distribution 
travelling’ into a pipe of radius d is 121: 

$. ( r, z, e) - - 2 cos(8) em0 ’ G’(a, ; r, r0 ,d) 

where the function @, explicitely given in Appendix , 
has a twofold expression depending whether the 
observation point, with coordinates (r,O) in the transverse 
circular cross section, is inside or outside the circle of 
radius ro. 

The electric field created by the induced currents is 
formally derived in terms of the function F(a) which is 
the Fourier transform of the unknown function f(z) in 
the a-domainf21: 

I$( r, 2. e) - - $ cos(0) 
I 

* 
F(a) G?a; r, b, d) elccZ da 

-* 

Again the function & has a twofold expression in the 
ranges rcb and r)b respectively. 

As the longitudinal component of the electric field 
must vanish at the surface r-b, for ~0, and reminding 
that the induced currents exist only in the region z < 0, 
we can write the following integral equations in the a- 
domain 

(2) 

I 
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These equations can be solved in the complex a-plain 
by applying the Wiener-Hopf technique@. A unique 
solution is obtained by resorting to the “edge condition” 
which in the u-domain requires: 

3. Longitudinal DipoleImpedance 

The effects of the longitudinal component of the 
electric field are examined in the frequency domain by 
means of the longitudinal coupling impedance. By using 
the impedance definition, after some manipulations we 
get: 

rm 

Zsil(r.6) - - 
I’ 

Efo(r,o,9) - w Ef&b,o,O) ~(-2) dz + 
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where 5. kr& and G*(a) are aUXiliar functions 
In our calculations we generalized the expression of 

the impedance by keeping as distinct the location of the 
source from the point where the fields are observed. 

In the analysis of the above expression we recognizes 
two contributions: a term due to a dipole charge 
distribution moving within an infinite pipe without 
discontinuities, and an additional impedance due to the 
step. 

The impedance per unit length (Q/ml of the infinite 
pipe merges into the usual expression when we assume 
lhe source and test points to be coincident: in the case 
k,dtr 1 we get the following approximation: 
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The impedance term accounting for the step in the pipe 
wall is found to be 

Z?,4r,81 _ j$ J&b,o,J) I,(C;r) 

E 
I ,(tb 1 

with 

where the sum Z is explicitely given in AppendiX. The 
above expression vanishes on the axis, and obviously 
when b-d (no step) and ro-0 ( no dipole term in the 
charge distribution). For r-to, the real part, related to 
energy lost, and the imaginary part are shown in Figs.2 
versus the normalized frequency kb, for two energy 
values 
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Fig. 2a : Real part of Longitudinal Dipole Impedance 
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Fig.2b I maginary part of Longitudinal Dipole I mpedance 

In the approximation {d<(l we get the simple useful 
expression: 

4. Transverse Dipole Impedance 

Applying the Panofsky-Wenzel relations existing between 
the longitudinal and transverswe force: 

# -i 
1 -k0,Ff, 

we may express the transverse impedance in terms of 
the longitudinal one as follows: 

X -(l+(j) - &!&ii - & 
11W’) Y Zh31 - $vI Zf, (r,e) 

0 
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AS for the longitudinal impedance, we obtain an 
impedance term due to an infinite pipe and an additional 
contribution due to the discontinuity. 
In the approximation (d(c I, the former term merges into 
the well known one : 

2)0 

which is directed along the dipole direction co and 
therefore represented as a scalar. 
The general expression of the latter term’s two 
components are: 

Z$r.BI - 

Z$r.B) - ;n;y 11;;” [w; - w;] 

{ 
I,@)( 1 + XI + !fL! ((f-f- X 

r ’ I> 

For 8-O the transverse impedance has only the radial 
component.; its behaviour is shown in Pigs.3 in the case 
r-r0 
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Fig3a Real part of Transverse Impedance: r component 
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Fig. 3b I mag. part of Transverse Impedance: r component 

In the approximation {d<<l the transverse impedance 
turns out to be directed along co and has the simple 
expression: 

Appendix 
2 

G?EL;r,r’,d) - -?- 
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where R = ( k2- ~d)1/2~ Jl(xJ and Hi(x), are Bessel 
functions. 

where a$, a,$ and c++ are the zeroes of Jt(RbI, Jl(nd) 
and of the cross product Jl(nb)HI(nd)-Jl(nd)Hl(nb) 
respectively. 
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