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Summary 

A program1 derived from the SUPERFISH cavity 
code is described, which computes the longitudinal 
coupling impedance for an azimuthally symmetric 
obstacle in a cylindrical beam pipe a6 a function of 
the frequency. The shape of the cavity i6 
arbitrary, allowing one to examine the effect of 
rounding the corners of the obstacle on the 
impedance. Other effect6 studied are the parameters 
of the broad resonance a6 a function of the obstacle 
shape and the high frequency dependence of the 
impedance. 

Introduction 

In a recent paper’ we showed that the longitu- 
dinal coupling impedance of a cavity with a beam 
pipe can be written as the sum of that for the beam 
pipe alone and a contribution from the cavity, which 
can be written as an integral of the fields over the 
surface of the cavity. A method for obtaining the 
field6 and coupling impedance using an adaptation of 
the program SUPERFISH* was outlined. 

We consider a beam pipe of cross sectional 
radius a and infinite length in both direction6 on 
which an azimuthally symmetric cavity-like obstacle 
is located. The longitudinal coupling impedance is 
defined as3 

Z,(w) = - 1 3* . B dv,+.o(2 (1) 

where t is the electric field in the cavity/beam 
pipe combination due to driving current given by 

2 

J,(r,z,t) = [ 
(Io/nro) e 

iwz/v 
> r<r 

0 r > ,Ol (2) 
0 

The factor exp(-iwt) has been omitted from all 
fields, currents and charges. 

We write the field6 in the cavity/beam pipe 
combination (denoted by sUbsCript 2) as the 6un1 of 
the fields for+t$e beam pipe alone (denoted by sub- 

script 1) and e,h, tQe+field increments due to the 
cavity. The fields e,h satisfy the homogeneous 
Maxwell equations 

vxc- iwJl , v x ‘: = - iwr+e , (3) 

as well as the wall boundary condition 

+ 
n2 x z = - ‘, 2 x 5 

on surface S2, (4) 

where ‘: 2 is a unit vector normal to the cavity/beam 

pipe wall surface S2. 

Equations (3) and (4) represent an equivalent 
SUPERFISH problem, with specified frequency and 
boundary conditions. In addition to the boundary 
conditions of eq. (4), we need to solve the problem 

of the boundary condition6 at the pipe-cavity inter- 
face. The problem is solved by using very long 
pipes filled with a slightly conductive medium 
(simulated with a very small imaginary part in E ). 
Physically this is equivalent to terminating the 
pipes with “matching loads”. The numerical problem 
of handling the very long pipe6 is manageable be- 
cause the perfect periodicity of the mesh in the 
pipe allows to solve the problem by cyclic reduc- 
tion. At each step of the process the field on 
“odd” numbered columns is eliminated giving 
equations for only the even columns. This gives a 
logarithmic solution time. As an inessential detail 
the pipe is in fact formally considered periodic, 
but in the limit of a very long pipe the communica- 
tion between left and right sides disappears. What 
is left are modified equations for the last columns 
inside the cavity, involving complex matrices that 
correctly describe the outgoing wave conditions. 
Since the matrices inside the cavity are real, we 
perform the solution of the cavity problem by 
Gaussian elimination leaving the first and last 
column to the end. In this way all steps but the 
last are performed using only real matrices. 

Longitudinal Impedance 

By using Maxwell’s equations we showed1 that 
the increment in coupling impedance due to the 
cavity could be written as 

-- 
AZL -. , I: ,2 Is2* SI dS A2 x I? * k2 (5) 

where the surface integral is evaluated only over 
that part of the cavity which differs from the beam 
pipe. Further analysis shows that the contribution 
to Eq. (5) can be split into two part6 by using 

k, =A, +-A (6) 

and that the contribution from fil is imaginary, and 

inversely proportional to y2. In the relativistic 
limit, one then can write AZL as a line integral 

z” I 

-i wz 
AZL 6 - r sts rdr e ’ h+(r,z), (7) 

0 2 1 

where we have used 

Elr 

ZI i% 
=2..Le 

2nr (8) 

and where Z. = m is the impedance of free 

space. 

Application6 

The program we have written has been tested for 
the case of a cylindrical pillbox with the semi- 
analytical result6 at Henke4, giving good agreement 
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(see ref. 8). As a further test we tried to repro- 
duce the (k)-l” behavior predicted for the large 
frequency limit (see refs. 9 and 10). The results 
are shown in Fig. 1 and 2 for the cavity considered 
in ref. 9. The impedance in the k + - limit for a 
pillbox cavity is given by the expression 

2 
z +. ,< l-i 

lra a ’ 
(9) 

for a cavity of length g. a is the pipe radius. 
Eq. 9 is independent from the radius of the pillbox. 
In our case g = b-a = .5a, where b is the pillbox 
radius. q. 9 predicts a value for the coefficient 
of (ra)-l$’ of 23.92. A least square fit to a * 
ka-1 * law is shown as a dashed line of fig. 1 and 
2. The coefficients of the real and imaginary part 
are 24.03 and -26.45. The reasonable agreement 
shows that we can reproduce the analytic result in a 
region where many modes propagate. Also note that 
our detailed plots differ from the ones in ref. 9. 
We believe our results are correct in view of the 
approximations used in the numerical calculations in 
that paper. The main feature of our program is the 
ability to compute the impedance for a cylindrically 
symmetric cavity of otherwise arbitrary shape. As 
an example fig. 3 shows the section of a free 
electron laser injector linac cavity considered at 
Los Alamos. Figures 4 and 5 show the real and 
imaginary part of the longitudinal coupling 
impedance as computed by our program. Below the 
cut-off frequency of 9500 MH, (the pipe diameter is 

1.2 cm), the real part of the impedance vanishes, 
while the imaginary part shows simple poles at the 
resonant frequencies of the cavity (the lowest is at 
1300 MHz). Above cut-off the picture is very com- 
plex. 

As a test of the effect of rounding the corners 
of an obstacle, we have computed the impedance for 
the two obstacles of fig. 6. Figure 7 shows the 
real part of the impedance for the pillbox with 
square corners, fig. 8 for the rounded obstacle. 
The conclusion seems to be that rounding corners 
does not improve the longitudinal coupling impedance 
in any significant way. 
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Fig. 1. Real part of the impedance (in Ohms) for a 
pillbox cavity of length g = .5a and radius b = 
1.5a. Horizontal scale is ka, which is dimensio - 
less. The dashed curve is the fit to the 3 (ka)-l ’ 
behavior for large k, as discussed in the text. 

Fig. 2. Imaginary part of the impedance for the 
cavity of Fig. 1. 
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Fig. 3. Section of the FEL linac cavity. The 
radius of the pipe is a = 1.2 cm. 
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Fig. 4. Real part of the longitudinal coupling 
impedance for the cavity of Fig. 3. Horizontal axis 
is frequency in MHz. 
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Fig. 6. The top obstacle has length g = Za, the 
bottom has the same length and smooth inner corners 
with radius r = 0.5a. 
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Fig. 7. Real part of the longitudinal coupling 
impedance for the pillbox of Fig. 6a. 

Fig. 8. Real part of the longitudFna1 coupltng 
impedance for the rounded obstacle of Fig. 6b. 

Fig. 5. Imaginary part of the impedance for the 
cavity of Fig. 3. 


