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Introduction 

Recently the experiments were performed [I] and the new ones 
were proposed [2] wherein the adiabatic rotation was made of the 
axial beam polarization into the plane that is normal to the guide 
magnetic field of the storage ring, after which the spins undergo 
free precession around the magnetic field direction. The beam de- 
polarization time rd in this case will be shown below to be deter- 
mined by the radiation damping time T and by the r.m.s. preces- 
sion tune spread <SQ*) in the beam: 

-I 
h =(sQ*)T (1) 

The precession tune spread is due to the 61 dependence on the 
amplitudes of betatron and synchrotron oscillations. This depen- 
dence IS determined by the lattice parameters in particular by the 
chromaticity. Thus the value of the precession tune spread can be 
controlled by varying the betatron oscillation chromaticity. 

Dependence of the Spin Precession Tune 
on the Amplitudes of Radial Betatron Oscillations 

and Synchrotron Oscillations 

For a particle moving in the median plane.of a storage ring 
the rotation axis direction 1s strictly axial, while the angular 
frequencies of rotation for the velocity vector WE~ilcD,./dt and spin 
vector Q=drD,/df are (31: 

w=--oi. 
Y ’ Q= -(+a) H 

where Q and y0 are the normal and anomalous parts of the par- 
ticle gyromagnetic ratio, H(0.x) is the magnetic field, v is the Lo- 
rentz factor, CD,. and CD are the rotation phases of the velocity and 
spin vectors. The electric iield is considered to be zero. 

It is convenient to transiorm these equations taking the genera- 
lized azimuth 0 as an independent variable instead of t: 

VL,d$-z-%H$, vEz dd;- 
Y 

-y.Hs. (3) 

Apparently the value of v, averaged over 0 and over the radial 
betatron oscillation phase @, is equal to unity, therefore: 

iff$,=-2, cvlkj.rn, =%I’, 

After averaging eq. (4) over the synchrotron oscillation phase 
also we conclude that the mean diflerential precession tune V is 
unrquely determined by the average particle energy 7, about which 
the synchrotron oscillations proceed, however 7 is not identical to 
the equilrbrium energy yj in the general case. Introducing 
S=(y-yy,)/y, we put down the betatron and the synchrotron os- 
cillations in the form 

6=fi+a,coso)b, B=n,fcosQ+~, , (5) 

where (L,, and a, are the amplitudes oi the first harmonics in the 
synchrotron and betatron oscillations, \ is the absolute value of the 
Floquet function, kr is the second order in n, and periodic in 0 
correction to the solution of the equations of motion. 

The total excursion from the design orbit X will be sought as a 
superposition 

X=‘I’6+‘I’,fi2+X. (6) 

In the natural coordinate system we have with the account of 
the second order terms [4] 

dl I 
z=o, L l+KX+$]. 17) 

RING 

x”+[ K2+h’-(2KZ+h’)15] x= 

=K(:,--fi2)-h’$-(K’+?h’: Kx2+KG+K’xx’, (8) 

where 00 is tlie revolution frequency of the equilrbrium particle, K 
is the dimensionless orbit curvature, i. e. (K)o=l, and the other 
values are also dimensionless: X is the excursion divided by the 

1 
storage ring gross radius, h’= -- dH, h”= -- t d’H 

(H)e 8X (H)e ax1 ’ 
and the 

derivatives of X and K are taken with respect to 0. The dispersion 
functions W. ‘Vi and the Floquet function absolute value f are the 
periodic solutions oi the known equations: 

‘4”’ + &‘I’ = K , f”+gxi= $. (9) 

Y;‘+g,Y,= -K+~g~+fjY-- 

- F+K(2&-K2)]Y’+K~+K’YY’, 
I’ 

(10) 

where g,= K’fh’. The betatron excursion ,? satisfies an equation 

I”+;&+[ h”‘4-gz- K*-- KYr’+2K(2g,- K’) U’] 61 R= 

= Kq -[$+K(2g,-K’)]R?+ K’Rf’+iKV)‘,?‘6. (11) 

The periodic correction solution of the eq. (II) xi, that is 
second order in a,. satisfies an equation. 

,~~+g,~,=~(~K(if2+~)-[~+K(2~I-K~i]f2+K’fll).(12) 

The auto-phasing mechanisin pi ti..ides for the isochronism in all 
particles’ motion on the average, i. e. averaging over 0 and-over 
the phases of betatron and synchrotron motion (dt/&) = I/COO, 
hence and in combination with eq. (7) we conclude that 

(KX)=- q, (13) 

Thus the trajectory lengthening due to the particle moving at 
the crossing angle with the design orbit must be cancelled out by 
the trajectory contraction to the less radius and therefore by the 
change of the average energy. Substitution of (5) and (6) into 
(13) yields: 

!KX)=(KY)G+(KLVI)~+(KX,). 

(.P) = (i”+ ;) g + (P) $. (14) 

Taking account of (KY) =a, where a is the orbit compaction 
factor, we find for the energy displacement 8 on the average: 

j=,-I[-:KX,)-~/I”,~)--~KV,+~)]. (15) 

The values (W,) and (KX,) averaged over 9 are readily ex- 
pressed through K, Y, f, Y” f’ by means of one-turn integration of 
various linear combinations of eqs. (9), (IO), (12): 

(~Y,)=(~2-K2YP+(K3-~)Y3-~~YY’2-K’Y2Y’), 

(KX,)=$((KJ-p/2- 

-$KY(p++) -ZKY’jr’-Kwf’). (16) 
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Thus 

g=a-’ 
I 

-+ (P’f;) KY-2/YKV’-fff’K’Y)- 

-~~~y”--K’y2+(X3-~))Uli-~~IB’Z_K’y3YI’)j,(,7/ 

The betatron contribution into & can be conveniently expressed via 

the radial oscillatinn chromaticity: 

+ =I f (f’l h”‘V-gz- K2- K’Y+2Ki2g,- K2) ‘Y] ) ) (18) 

where similarly to eq. (17) we can eliminate g, terms: 

Y~,(-~(f,2+~~+(~-Kp)l~fz_ 

-+K'Y')f2+2(f"+ +-) KY++/f’K’wt2f/‘Kv’). ‘(191 

Substituting (19) into (17) we express the terms of eq. (17) that 

do not involve K through ~2: 

&,-I$ 
[ 

vd” - (K’Y’//‘f 

+ +KY(f’?+ j-1 “‘,,:,~+,.., ), + 

+a-ld((+q y3+/++2+ 

+ f KYV2+ K’VY’?) (20) 

In the storage rings with strong focusing lattices the contribu. 
tion of the curvature K terms is very small, so is usually the con. 
triburion of the synchrotron oscillatlnns, therefore the minimum of 

the average energy spread and, consequently the minimum oi the 
spin tune spread 6v=v.8 occures at the chromatjcity close to zero. 

Diffusion of the Spin Precession Phase 

Consider a given dependence of the spm precession frequency 

Sl on the squared amplitude a* of a specified oscillation. To the 
first order in a2 we have 

<2=no+ gj 02, (21) 

We assume the Gaussian distribution over amplitudes with The 
r.m.s. deviation of CT.. Then the value of Q averaged over the par- 
ticles ensemble is equal to 

o=a,+ $ c?,‘. (22) 

Let the initial phases of precession coinside for all particles, 
We find the r.m.s. deviation of ihe phase UI for any particle from 

the average phase 6 within the time 1: 

-...-- 
[u”(Y)-$1 df”. (231 

One can show (see Appendix) that ____.- the correlation 

[ a*(r) -cl: 1 [ r2jf”) - CT;] averaged over the initial amplitude distri- 

hutlon is equal to 20: exp where r stands for the 

damping time of the specified oscillation. After the integration we 
obtain: 

(24) 

The factor out of the brackets is actually the mean square of 

the precession tune spread (n. Eq. (24) has an evident 
physical meaning: within the times 1 much less than the amplitude 
randomization time r the phase deviation grows proportionally 
with time, then at f>r we observe the establishment of the square 
root dependence characteristic of a diffusion process. 
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Appendix 
-~ 

To calculate the correlations of the form az(t’)o*(~“) we have to 
know the form of the.non-equilibrium distribution function j(t, a) 
over the particles’ amplitudes. It obeys the kinetic equation 

a/ f a di ---- 0,’ a’f 
at r ----7z= T aa 

o 

The equilibrium distribution function has ihe form 

(Al) 

Let all the particles have the amplitude (I” at the initial time. If 
there is no diffusion the oscillation amplitude be damped following 
the law E=n,+-“‘. One can prove by substitution into rq. (Al) 
that the distribution function 

f=& [exp(--*)+ev(-!$$-)], (A3) 

where o*(t)=u:(l -e-*“‘) satisfies the kinetic equation and has the 
&iunction limit at the initial time. The second exponential is added 
for symmetry of f to provide for a//da=0 at the origin. Making 
use of this distribution function we lind the correlation 

a*(f) 2(O) = ~.?a~( I - e?‘) + a; E-““. 

Taking the averaging over the initial amplitude 
assumed to be distributed hy the functlon in eq. (A2), 
dislred correlation 

a’(f) d[O) -CT: (I +2e?“) 
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