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Abstract 
A set of differential equations is derived for 

the time-evolution under space charge conditions, of 
the second order moments of the phase-space distri- 
bution of a bunched beam. The model takes into account 
two special features of an AVF cyclotron namely 
dispersion (i.e. radial-longitudinal coupling) and 
isochronism. The method used can also be applied to 
other types of circular accelerators. It is based on 
the RBS approach; it assumes linear space charge 
forces (determined by a least squares method) and it 
assumes an ellipsoidal charge distribution which may 
be rotated around its vertical axis. Several integrals 
of motion are given such as the total angular canoni- 
cal momentum in the bunch. the total energy-content of 
the bunch and the RMS-representation of the 4-dimensi- 
onal horizontal phase-space volume. 

1. Introduction 
The thus far published analytical studies of 

space charge effects mainly deal with linear 
accelerator structures (l-3). For circular accele- 
rators like the cyclotron the analysis is mostly done 
with numerical many-particle codes (4.5). Circular 
accelerators have the special feature that, due to 
dispersion, the radial particle position depends on 
the longitudinal momentum. This means that particles 
in the “tai 1” of the bunch, who lose energy due to t.he 
longitudinal space charge force, will move to a lower 
radius. The opposite can happen for the leading 
particles. For the isochronous cyclotron there Is a 
second special feature namely that there is no 
longitudinal RF-focussing to counteract the space 
charge forces. In this situation the longitudinal- 
transverse coupling (dispersion) may become extra 
important (4.6). 
We represent the bunch-properties by second moments of 
the phase-space distribution and derive a set of 
differential equations for their time evolution under 
space charge conditions. The derivation uses the 
Hamiltonian formalism and is an application of the 
RMS-(Root Mean Square)approach. assuming linear space 
charge forces as determined by a least squares method 
and assuming an ellipsoidal charge distribution (2). 
We allow the ellipsoid to be rotated around its 
vertical axis. The method used. can be applied to all 
types of circular accelerators. We consider as a 
special case the isochronous cyclotron for which a 
smoothing procedure will be applied to eliminate the 
time dependence resulting from the azimuthally varying 
guide field. For convenience we omit acceleration 
effects. The derivation is such however, that these 
can be included by using methods developed by Schulte 
et. al. (7,8). 

2. The Hamiltonian without snace charge 
We describe the motion of the particles in a 

coordinate system which moves with the bunch along the 
equilibrium orbit of a reference particle having a 
kinetic momentum po. 
We approximate this motion with linear equations. 
Then, the Hamiltonian is quadratic in the variables. 
For a circular accelerator the Hamiltonian, in the 
absence of acceleration, becomes (9): 

go= $2 g+ ; pp ~x(T)X~+ glz(T)i2 - wj(T)xp, (1) 

where x, s, z are the coordinates, px. is, pa the 
canonical momenta and T the independent variable. The 
variables and also the Hamiltonian are scaled 
quantities: 

X =X/R, z = z/R, S = -rs/R, 

i x = Px/Pc P, = Pa/P, 43 = Ps/(+rP*) (2) 
T = vot/Ro ii0 = Bo/(vo~o) 

Here R, is the effective radius of the equilibrium 
orbit, vo the velocity of thf reference particle and -r 
the relativistic factor (l-vo/c2)-f. We note that the 
scaling of the longitudinal variables involves this 7. 
The non-scaled coordinates x. s end z represent the 
horizontal. longitudinal and vertical distance in the 
bunch. The variables px and pz give the transverse 
components of the kinetic momentum of the Particle. 
The variable ps gives the deviation between the 
longitudinal kinetic momentum of the Particle and po. 
The time unit T is defined such that an increase of 27r 
corresponds with one revolution of the bunch. The 
quantities C&(-r) and Q=(T) represent the azimuthally 
varying horizontal and vertical focussing strength of 
the magnetic guide field. The quantity n(7) represents 
the bending strength of the guide field. It is inver- 
sely proportional to the local radius of curvature of 
the equilibrium orbit. For an AVF cyclotron the 
quantities Q,. Q, and rl can be expressed in terms of 
t.he Fourier components of the magnetic field and their 
radial derivatives (9). The equations of motion 
derived from the Hamiltonian fl, give the well-known 
result that the vertical coordinate obeys an homoge- 
neous Hill-equation and the horizontal coordinate an 
inhomogeneous Hill-equation with mcmentum deviation as 
the driving term. 

Due to the azimuthal variation of the magnetic 
guide field the quantities Qx, Qz and r) in Eq. (1) are 
“time-dependent”. As has been shown in Ref. (10) the 
oscillating (i.e. time-dependent) parts of a Bamil- 
tonian can be transformed to higher order in the 
flutter (i.e. the azimuthally varying part of the 
mgnetic field) such that, within the approximations 
used, the new oscillating parts can be neglected. For 
this purpose a linear cenonical transformation (to new 
variables %. X, 2. 5x, $s. 3z) is applied which 
changes coordinates and momenta only slightly; the 
difference between the old and new variables being of 
Lhe order of the flutter. The new smoothed Hamiltonian 
Ho has the same shape as in Eq. (1) but with Qxl Q, 
and r) replaced by time-independent quantities uX, V: 

and ?j respectively. Bere 9 and u, are the horizontal 
and vertical tune respectively and fj is the “average 
bending strength” of the guide field. For an AVF 
cyclotron the quantities v,. uZ and ij can again be 
expressed in terms of the Fourier components of the 
flutter (9). We note that s and ur are also given in 
Ref. (10). 

If we assume that the cyclotron is Perfectly 
isochronous, then we can establish a relation between 
the quantities 7, ij and vX. This relation p be found 
from the equations of motion derived from H, by using 
the fact that dg/dl- must be zero for particles which 
have a deviating momentum 8 and move on the corres- 
ponding equilibrium orbit. srhe relation is given by: 

72 - (IqYp = 0 (3) 
By using this equation we can remove the quantities 7 
and ?j in II, In favour of u,. This then gives the 
smoothed Hamiltonian for an isochronous cyclotron. In 
order to bring this Hamiltonian in a symmetric form 
(with respect to the longitudinal end horizontal 
variables) we apply a final canonical transformation. 
This transformatio: leaves the vertical variables 
unchanged (a = g. 
and g (2 = z, 

= & ) and also the coordinates 4 

defined as: 
The new momenta 6x and fiz are 



736 
A 1 n 

Px 
= 5X - z “x; , ps = ;;s - ; ux x (4) 

We note that these new momenta are no longer equal%to 
the kipetic momenta. By using Eq. (1) (with Qr = u,. 
Qr = uro q = fj) and Eqs. (3) and (4) the smoothed 
Hamiltonian in the new variables can be written as: 

* io= $(ix+ 3 uxg2 + g,- f ,,^)2+ 3 2: + $ vy _ (5) 

As a remark we note that the horizontal part of Ho has 
the same structure as the Hamiltonian for a particle 
that moves in a homogeneous magnetic field. In section 
4 we will use Eq. (5) to derive the smoothed moment 
equations for an isochronous cyclotron. 

3. The space charge potential function 

The Hamiltonian under space charge conditions fi 
is found by adding to the unperturbed Hamiltonian H a 
(scaled) electric potential function 3 = q+/(v,p,) 
which represents the self-field of the bunch. We asume 
that the radial size of the bunch is much smaller than 
the local radius of curvature. For the calculation of 
4 the curved coordinate system may then be approxi- 
mated to be cartesian. With the scaling of Eqs. (2) 
the Poisson equation becomes: 

2s+Es+a25=-( 

ai2 a? a2 
(6) 

where i = Rep/(qq) is the (scaled) charge density. 
Equation (6) also includes the magnetic self-field of 
the bunch. 

We want to use a linear approximation for the 
space charge forces. A General shape for the potential 
function then becomes: 
-- 
+(x.T)= - ; a(~)? -d(r);; - ; b(r)? - & C(T)Z2 (7) 

Here we have taken into account (via the term d(T):;) 
a possible non-symmetric distribution of the bunch, as 
may-result from the transverse-longitudinal coupling 
in H,. For the definition of a. b. c and d we use the 
least squares method as introduced in Ref. (2). i.e. 
we minimize the-averaged difference D between the true 
electric field E and its linear approximation E, which 
follows from Eq. (7). D is given by: 

D = ,mjE - Eolz ; (;,T)& (8) 
.-CO 

We derive Ec from Fq. (7) (E, = - v$) and substitute 
this in Eq. (8). Then we differentiate Fq. (8) to a, 
b, c and d. This gives a set of four equations for a. 
b, c and d. Its solution gives a. b, c and d in terms 
of the second moments < ii >. < TZ >. < 5’ > and 
< Z’ > and five unknown terms namely < &, >. < SEX >, 
< &s>. < SE, > and < &a >. In the following we 
express these terms as functions of < jia >. < RR >. 
< E2 > and < ZZ >. For this we assume that the charge 
distribution has ellipsoidal symmetry, i.e.: 

-- 
p = p(u). u = (ii/A)2 + 2.&P + (s/B)2 + (X)” (9) 

The corresponding electric field follows from the 
Poisson equation Eq. (6). In order to find the 
solution we rotate the coordinate frame over a (yet 
unknown) angle ‘p such that in the new frame ij takes 
the simpler form: 

j = ; [(>A)a + (G/B)’ + (G/C)‘] (10) 

(Note that the rotated coordinates z, z. G should not 
be mixed up with the variables introduced in section 
2.) To find expressions for A. B, C and up we calcu- 
late the new second moments of the charge distribu- 
tion Eq. (10). These are related with the old moments 

via the coordinate rotation. The angle 7 is determined 
by the requirement that in the rotated frame < Z?I > 
must vanish. We find for A, B, C and ‘p: 

(A/k)2 = g< x2 >(l+l/cos2~)+ < S” >(l-l/cos*)] 

(B/k)” = $< 2” >(1-l/cos2~)+ < s” >(l+l/COS&)] (11) 

(C/k)2 = < Z” > , tan2q = 2< xs >/(<S2> - <X”>) 

where k is a yet unimportant constant. The averages 
< %E, >. < &, > and < %EiE, > result from the rotated 
charge distribution Eq. (10). These have been given by 
Sacherer (2). The averages in the non-rotated frame 
then follow from the inverse coordinate rotation 
applied on < g, >,< gl?, > and < ?E, >. The result is: 

-- Ik BC k C A < x Ex > = 7~ g (~.$cos%+ g g (jj, j$ sin%] 

< S Ex > = - +i g(i,$- i g (g. $]sinpcosp (12) 
0 

< s Es > = $$ g (i.:) sin2+ k g(g.k)cosay] 
0 

<xz>= +-$g($ 
0 

where I is the average beam current. The function g 
has been defined in Ref. (2). The characteristic 
current I, is defined as: 

IO = 2bmoeoc3 (+-l)JV(qX 7) 
3 (13) 

where h gives the number of bunches per turn. The 
parameter X, (as given in Ref. (2)) depends only 
weakly on the type of distribution chosen. We can take 
h, = 1/(5E) which corresponds with a uniform distri- 
bution. The coefficients a, b, c and d in Eq. (7) have 
now been specified completely in terms of second 
moments. The solution can be written as: 

a = (<Ga><Z&> - <XS> <ZZ>)/(<X2><S2> - <XS>2) 

b = (<:e><&> - <xi> <&>)/(<:“><;s> - <x;>2) (14) 
c = <z,>/<2> , d = <xi> (a-b)/(x2> - <;a>) 

4. Moment eauations with space charge 
We form ten independent second order moments 

corresponding with the horizontal motion and three 
moments corresponding with the vertical motion. We 
note that, within our approximations. the horizontal 
and vertical motion are uncoupled. Therefore we do not 
have to consider cross-terms between horizontal and 
vertical variables. The Hamiltonian with space charge 
H = H, + 4 determines the time evolution of the 
moments. This can be seen by considering for 
the moment <ji’>. For this we have: d<f’>/dr = 

example 

Z<%l%/dr> = Z<?&ai;,>. We repeat this for the other 
moments and then arrive at a non- linear system of 
thirteen coupled first order differential equations. 
This system is closed (i.e. does not contain unknown 
terms) because i) the equations of motion of a single 
particle are linear (therefore no third or higher 
moments are involved) and ii) the coefficients a. b, c 
and d are already expressed in terms of the second 
moments. 

The system of moment equations obtained can be 
applied to all types of circular accelerators. We will 
not write down this system. Instead, we consider as a 
special case theoisochronous cyclotron described by 
the Hamiltonian H, given in Eq. (5). The smoothing 
transformation and the canonical transformation 
defined in Eqs. (4) in principle have to-be applied 
also on the electric potential function 9. The latter 
is a point transformation which leaves the potential 
function unchanged. We note that the moments which 
involve i, and i; obtain another meaning due to this 
transfo&tion. ihe relation between the old and new 



moments is determined by Fqs. (4) however. As for the 
smoothing procedure, the difference between the old 
and new variables will be small. We neglect the change 
of the potential function due to this transformation. 
The system of moment equations for the isochronous 
cyclotron becomes: 

* ** 
g <x2> = 2< xp,> + vx 

** 
< xs > 

n* * * ** n,-. ** 
$ <xpx>= <p;>+u;-4a)<x’>+x(<xps>+<spx>)+d<xs> 

n * * ** ** 
$ <p;> = Px<pxp,S+(a:-4a)<xpx>+2d<spx> 

** h,. 
& <s> = 2<sps>-Ux<XS> 

g <“P,>=<P~>-+ 
** ** ** 

4 v;-4b)&$ vx(<xps>+<spx>)+d<xs> 
** ** n* 

& <F;;> =-vx<pxp,+;-4b)<sps>+2d<xps> 

n* * n 
2 <xs> = ~x(<s”)-<x2>)+<xps>+<;;x> 

$$;x;s>= $ “x(<,~>-Cp~>)+J~-la)<~s>+ 

- $~;-4b)<:;x>+d(<;x>+<;;s>) 

& <;;s>=<;x;s>+x(<;;s>-<&x>)i-&-4b)<;:>+d<;”> 

& <,Gx>= <;x;s>+x(<“;s>-<~x>)i-$n;-4a)<j;)+d<;z> 

g < s > = 2 < iPz > 

d ** 
F < zpz> = < p; > - (u; - c) < 22 > 

h 
$ < p; > = -2 (u* 

** 

z - c) < zp, > (15) 

where the coefficients a. b. c and d are given in 
terms of the second moments < 2' >. < k$ >. < 1' > and 
< 2’ > via E&s. (11) - (14). As a remark we note that 
the latter three of Eqs. (15) can be reduced to one 
second order differential equation for the vertical 
RMS-envelope z, = < !?’ 9. This equation contains the 
vertical RMS-emi ttance dz (see for example Ref. (2)). 
In our case, this RMS-emittance is an integral of 
motion. This is due to our linear approximation of the 
space charge forces (see also Ref. (3) where RMS 
emittance-change is related to the change of non- 
linear field energy). A special solution of Eqs. (15) 
is obtained if one considers bunches with rotational 
symmetry around their vertical axis. For that case the 
equations for the horizontal moments can be reduced to 
one second order differential equation for the hori- 
zontal envelope of the bunch (9). Another special 
solution of Eqs. (15) is the stationary solution. 
However, this solution is only physically realistic 
for the rotationally symmetric bunch (9). 

5. Integrals of motion of the moment. equations 
As already stated, the vertical RMS-emittance is 

a constant, due to the linear forces assumed. As a 
result of the transverse-longitudinal coupling in the 
unperturbed Hamiltonian, the horizontal and 
longitudinal emittances are not constant. However, the 
following “sum of emittances” defined by: 

* ** 
e2 = t x2 > < ;; > - < xp, >2 + < G2 > < ;;; > + 

** I* * n 
- < sps >a + 2(< xs > < pxp, > - < “ix >) 

is a constant as can be verified with Fqs. (15). 
.Another constant is the R&IS-representation of the 
four-dimensional horizontal-longitudinal phase-space 
volume. For this we find the following expression: 

* * ** * * ** 
T = 16 {[< x2 > < p; > - < xpx>‘][<s”> <p;> - <sps>‘]+ 

** *n ** ** 
-2 *2 ** [<xs> <p,p,> - <xps> <spx>y - [<x > <s > < p p >= + xs 

+ <>x> <;;> <%2+<;2> <;;> <s;x>2+<;2> <;;> <;Lj,>q + 
* ** n * ** n ** h * ** 

+ 2[<x2> <sps> <p,ps> <spx>+ <ss> <xpx> <pxp,> <xps> + 
h ** *n n* n *n n* ** 

+ <p;> <sps> <xs> <xps> + <pi> <xpx> < xs > < spx >] + 

- 2[<xpx> <,;;s, <;;> <;x;s>+<y;;x> <GGs> <Gs> <&-x>]}x 
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We note that the quantities e and T are conserved for 
all linear canonical systems with two degrees of 
freedom and arbitrary coupling. Two other integrals of 
the smoothed moment equatio_ns are the (scaled) total 

-angular canonical momentum L of the bunch defined as 
L = N(< 66x > - < $ >, with N the total number of 
particles. and also the (scaled) total energy of the 

bunch G = T + f pere T is the total kinetic energy (‘i: 
= N < H, > with H, given in Eq. (5)) and W is the 
total space charge energy. For the ellipsoidal charge 
distribution we find (9): 

TJ=N(<~x>+<~~s>+<~~z>)~t~ Irn 
0 

du 

6. Conclusion 
Within the approximations trade, the numerical 

integration of the moment equations derived, gives the 
time evolution of the RMS-properties of the bunch 
under space charge conditions. A main advantage of the 
method is that the integration will ask for much less 
computer time than many-particle codes. As a first 
approximation, the assumptions made do not seem to be 
unreasonable. Therefore we expect that the model can 
give a useful contribution to the study of space 
charge effects in an AVF-cyclotron. Nevertheless, its 
possibilities and restrictions should be further 
evaluated by comparing the results with many-particle 
calculations. 
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