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Introduction 

In the theory of particle longitudinal motion, 
a classical definition of synchronous particle 
(synchronous energy, phase, and orbit) assumes that 
there is a one-to-one correspondence between the 
guiding magnetic field and the frequency of the ac- 
celerating electrical field. In practice, that 
correspondence may not be sustained because of er- 
rors in the magnetic field, in the frequency, or 
because sometimes one does not want to keep that 
relationship for some reason. In this paper, a 
deftnition of synchronous particle is introduced 
when the magnetic field and the frequency are 
independent functions of time. The result is that 
the size and shape of the bucket (separatrix) 
depends not only on the field rate of change but 
also on the frequency rate of change. This means, 
for example, that one can have a stattonary bucket 
even with a rising field. Having the frequency, in 
additLon to the field and voltage, as parameters 
controlling the shape and the size of the bucket, ft 
is shown how to decrease particle losses during 
injection and capture. 

Adiabatic Variables and Equilibrium Equations ------ 

In the theory of particle longitudinal motion, 
there are four values which we call adiabatic vari- 
ables : B is magnetfc field, f is supplied radio 
frequency, p is particle momentum, and R is the 
radius of synchronous orbit for that particle. 

Suppose the state of the accelerator can be 
described uniquely by two variables B and f, while 
the state of the particle is described by p and R. 
Some of the particles, namely the synchronous one, 
can be at a state of equilibrium with the accelera- 
tor. Such an equilibrium can be expressed by the 
unique functions 

P = p(B,f), R = R(B,f), (1) 

which can be inverted to gtve unique functions 

B = B(p,R), f = f(p,R). (2) 

If relations such as (1) and (2) exist, we will call 
them adiabatic relations or equilibrium equations.1 
For example, the well-known equations 

= ePoBo, (3) 

f, = (chiZ*~~I(EriecPoBo)2 + 1 ]-1’2 (4) 

are equilibrium equations for central (design, nomi- 
nal, on-momentum) orbit of radius R,. Here B, and 

f0 
are nominal field and frequency, p is particle 

nominal momentum (on-momentum partic e), P e and E, 
are particle charge and rest energy, h and P, are 
machFne harmonic number and curvature radius. 

---- 
*Work performed under the auspices of the U.S. 

Department of Energy. 

The frequency-field relation (4) is the neces- 
sary and sufficient condition for the existence of 
the synchronous particle on R,-orbit. Such a parti- 
cle is synchronized with supplied frequency f, by 
the equilibrium equation 

hWo = 2nf,, (5) 

where wo is the particle rcvolutlou frequency. 

By taking the total differential for each of 
equilibrium equations (L) and (2), we will come to 
the so-called differential relationsl,’ such as 

dR/R = (Y2dfif - dB/B>/(Y&. - Y’), (6) 

dp/p = dE/H*E = (n dB:B - df/f)/ri (7) 

;I’=” ‘,” -’ ty’ ; E triEr is transition energy, a = U;:, 
, Y = E/E,, fj2 = 1 - y-2. These two dif- 

ferential relations allow us to determine the state 
of the particle (p,R) or (E,R) knowing the state of 
the accelerator (B,f). 

Synchronous Particle Out of Central Orbit 

Usually the frequency-field relation (4) is 
kept during the whole accelerating cycle. However, 
sometimes there are errors in the magnetic field or 
in the frequency which make (4) invalid. Moreover, 
sometimes during injection and capture it is worth- 
while to introduce deviations from (4) by frequency 
manipulation. 

If we supply the field B = B, + AB and fre- 
quency f = f, + Of, then it will change the synch- 
ronous radius by AR. Replacing the differential 
relation (6) by the difference equivalent, we will 
have a relative error in radius with respect to 
nominal R, 

AR/R, = (Y,’ Af/f, - AB/B,)/(+, - Y,‘) (8) 

where Y, is the synchronous energy (in units of the 
rest energy) of the particle provided it stays on 
the non-distorted central orbit: 

Y2 = (~cP,B,/E,)~ + 1 = [1-(2nRof,/ch)2]-1. (9) 0 

Thus, a new synchronous orbit will have a new 
radius 

RS 
= R, + AR. (10) 

Now a new synchronous energy can be found with the 
use of particle velocity v = Bc = wRs and synchroni- 
zation hw = 2nf as 

ES = Y,E, = (1-f$)-1!2E = 
r 

[l-( 2nR 
S 

f/ch) 2]-1’2E r’ (11) 
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Perhaps the most important relation is that for the 
rate of change of the synchronous energy. Dividing 
(7) by the time differential dt, one gets 

E, = (oB/B - i/f)@&. (12) 

It is easy to see that synchronous energy will be 
constant not only when f = const, B = const., but 
more generally when 

f/f = a B/B. (13) 

For example, at the beginning of injection at the 

Brookhaven AGS, we have B = 250 Gauss, B = 4.9 
Gauss/ms, f = 2520 kHz, CL = 0.014, which gives us 

from (13) i = 0.68 kHz/ms to provide Es = const. 

If a particle stays on the central orbit R,, 
then the particle's synchronous phase is determined 
by the energy gain in the electrical system 

2Tis = wsVSinos, hws = 2rf 0 (14) 

and by the corresponding "field gain" in the mag- 
netic system 

E = ;dE/dp = * ve = ~sRoPoBo, 

which results in 

(15) 

Sin%& = 2~RoooBo/V. (16) 

However;if the synchronous orbit is not the central 
one, then the energy gain (14) should be combined 
not with field-gain alone, but with the frequency- 
field gain (12), which results in 

Sin+, = h'(aB/B - i/f)/aVf, a = hn,/B'E,. (17) 

Obviously, (17) will be identical to (16) if the 
frequency f is ideally adjusted to the field B 
through the frequency-field relation. 

Computer Simulations 

Since we have established the basic formulae 
for a synchronous particle (synchronous orbit R,, 
energy Es, and phase es), we have a reference frame 
to describe a motion of all the other asynchronous 
particles. 

Let E = Es + AE and -r ( 4 < fl be an energy and 
phase of an arbitrary particle- The dynamic equa- 
tions for particle motion are 

$(+f) = g (Sin4 - SinO,), (18) 

d$/dt = au,&, 2nf = hws, (19) 

where f is applied frequency, V is cavity voltage, 
and ws is the revolution frequency of the synchron- 
ous particle, which is not necessary staying on the 
central orbit. 

A computer program was developed to solve 
dynamic equations (18) and (19) by the usual means 
of difference approximations. In the computer model 
simulating longitudinal motion in the AGS, we intro- 
duced aperture limits. They are AR = 2.5 cm dle- 
tance in and out from the central orbit of radius R, 
= 128.5 m. During the tracking, each particle is 
subject to counting, provided the particle orbit 
radius R satisfies R, - AR < R < R, + AR. If this 
condition is not met, then the particle is lost 
(hits the aperture) and is removed from further 
calculations. Figure 1 presents the results of 
computer simulations of injection and capture at the 
Brookhaven AGS.' 
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Fig. 1. Computer modeling representing 
AGS control program for injection 
and capture. 

There are three graph sections in Figure 1. 
The upper graph has three curves. The middle curve 
Es(t) represents an evolution of synchronous energy 
with the time. After each 0.1 ms, the curve Es is 
crossed by vertical lines representing the height of 
the bucket at that time. Two other curves below and 
above Es are the aperture limits in energy units. 



If the bucket reaches either of those limits, then 
some of the bucket particles hit the aperture and 
will be lost. The vertical time line crossing all 
three graphs represents the duration of injection 
which starts at T = 0 and finishes at T = 0.3 ms. 
Within the aperture corridor, the solid horizontal 
line ending at the time line represents constant 
injection energy. 

The middle graph shows the frequency program 

f(t)* It starts with constant i = 22 kHz/ms and 
during 100 us between T = 0.2 ms and T = 0.3 ms it 

stays with f = 0, then it switches to i = 33 kHz/ms. 

The lower graph shows the voltage program, 
which is linear between T = 0.2 ms and T = 0.5 ms 
and which is constant elsewhere. We can also see an 
intensity curve I(t) , which is the total number of 
particles at each instant or total charge vs time. 

The five pictures in Figure 1 represent parti- 
cle position in phase space (AE,$). The first 
picture shows the bucket at the beginning of injec- 
tion, injection ribbon, and the first 39 particles 
after the fi.rst turn (4.7 iis ^I 0.00 ms). The third 
picture (T = 0.3 ms) shows two adjacent ribbons 
representing energy shift between the first and last 
portion of injected particles. At the bottom of the 
last picture we can see mountain ranges. The moun- 
tain range is a series of curves representing parti- 
cle intensity distribution versus phase angle for 
each nth turn, in this case for each 20th turn. 

Each of the five pictures shows bucket instan- 
taneous contour. The last picture shows three 
buckets: at the beginning of injectton (T = 0), at 
the end of injection (T = 0.3)) and at a later time 
(T = 1.6 ms) when 16% of the particles have been 
lost. 

Another controlling program proposed for loss 
reduction is presented in Figure 2. Because the 
magnetic field increases as B(t) = 249.3 + 4.9t ([B] 
= Gs, [t] =ms), the frequency rate, calculated from 

(17) should be f = 0.7 kHz/ms to produce a station- 
arv bucket for 300 ps of injection. After 0.2 ms of 
injection, the voltage ramps up from 50 kV to 300 kV 

linearly with < = 650 kV/ms. At the end of injec- 

tion, the frequency rate changes from i = 0.7 to f = 
10 kHz/ms and stays at that level for 0.2 ms before 
switching to a final 33 kHz/ms. This intermediate 
period serves as a transition from stationary to 
fully accelerat lng node, preventing particle spill 
below the bucket due to particle inertia. 
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Fig. 2. Proposed controlling program for the AGS. 
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