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Abstract Two types of beam response measurements were 
carried out in SPEAR with the aim of gaining understanding 
of high intensity phenomena. In the first case, the beam was 

kicked horizontally with the injection kicker magnet and the am- 
plitude of the resulting betatron oscillation was observed as a 
function of time. This experiment was carried out for different 
beam intensities. At large currents, the decay of the oscillation 
is dominated by the “head-tail damping” due to the transverse 
impedance. It shows the expected dependence on the chromatic- 
ity. At small currents, the decay of the excited betatron oscilla- 
tion is due mostly to Landau damping. Another series of exper- 
iments dealt with the longitudinal behaviour of a single bunch. 
.4 network analyser was used to modulate the phase or ampli- 
tude of the RF voltage and thereby excite dipole or quadrupole 
synchrotron oscillations. The modulating frequency was swept 
through the dipole or quadrupole frequency and the beam re- 
sponse in phase and amplitude, the longitudinal bunched-beam 
transfer function, wits observed. The behaviour of the transfer 
function changed significantly as the beam current was increased. 
We outline a theoretical framework for the interpretation of these 
measurements. 

1 Head-tail damping 

Using a broad-band model of the impedance of SPEAR (resonant 
frequency w,/2x z 1.3 GHz, & = 1) one can derive the expected 
head-tail damping rate 

1 c2e~lz,,lLQz -- (li 
T - 4fiE~~,aw, ’ 

where u N 0.042 is the momentum compaction, &= is the hori- 

zontal betatron tune, gZ z 50mm is the bunch length, f is the 
average bunch current and El = pdQ=/dp is the chromaticity. 

To measure this damping rate, the beam was kicked (horizon- 
tally) with the injection kicker and an exponential decay of the 

resulting coherent betatron oscillation was observed on a fast os- 

cilloscope. We made measurements of the horizontal damping 
rate both as a function of current 1 at fixed El: and with fixed 1 
and varying tZ (see Figure 1). At low currents the decay of the 

oscillation is dominated by Landau and radiation damping. 

Fitting the data in Figure l(a) to the formula (1) gives IZA,~ 2: 
0.18MR while the data of Figure l(b) yield 121,/ 2 0.24MR. 

These results agree quite well with each other and also with sim- 
ilar measurements taken later when the “SPEAR capacitor” [l] 
had been installed-from which we may infer that this device did 

not change ZI. 
Estimating the longitudinal impedance 12/n] via the relation 

ZL 2 (2R/b*)jZ/nl where b 2: 45mm is an effective chamber 

radius and R 2 37.4mm is the machine radius, we get /Z/n1 2 
5-60. This should be considered as an effective value valid for 

the range of bunch lengths during our measurements. 
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Figure 1: Head-tail damping rate, (a) at constant chromaticity, 

(b) at constant current, with E = 2.07 GeV, P = 0.83 MV. 

The decay of vertical coherent oscillations was also studied and 
led to similar results. 

2 Longitudinal bunched-beam transfer 
function 

In a further series of experiments we excited dipole and quadru- 
pole synchrotron oscillations of the bunch by modulating the 
phase or amplitude of the RF voltage. A network analyser was 
used to sweep the modulating frequency w through a range en- 
compassing one of the corresponding mode frequencies and the 
beam response was fed back into its input. The instrument could 
then display the beam’s response to excitation in both phase and 
amplitude which we call the longitudinal bunched-beam trans- 
fer function (BBTF). Some representative results are shown in 
Figure 4. 

Transfer functions have been treated for coasting beams [2] 
and there have been some discussions of the bunched-beam case 
[3,4,5j although a complete theory in the presence of impedances 
producing frequency shifts and bunch-lengthening effects is still 
lacking. Here we present a theoretical model which reproduces, at 
least qualitatively, the main features of our measurements within 
a range of beam currents below the threshold of turbulent bunch- 

lengthening. 
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Figure 2: Computed synchrotron frr- Figure 3: Computed BBTF: amplitude Figure 4: Measured BBTF: amplitude 

quency distributions. and phase of dipole mode. (Iog scale) and phase of dipole mode. 

Theoretical model with ~4 = hcxm=/Q,O and an appropriate normalisation constant 

C. Using the relation I(b) = 2xhfJ $(E, &) dc, we get an implicit 
Equations of motion Let us drscribe synchrotron motion equation for the current distribution: 

using the fractional energy deviation E = hE/E and the RF 
phase deviation 4. For simplicity, W’P make the approximation ,. \ 

1 - cos $5 
that the stable phase angle 4, = 0 and consider the effects 
of a purely inductive coupling impedance IZ/nI = wOL. Let 

= I(0) exp (,$+, 
) i 

exp --- (5) ‘i fl<; j 

fo = do/271 denote the revolution frequency, c, the peak RF WV have defined the dimcnsionlpss paramptrr 

voltage and da0 = wo hapcos+,/2aE = wOQaO, the angular 

synchrotron frequency in the linear part of the RF waveform, 
c dif v~h211Z/nj 
i - 

as distinct from the general amplitude-dependent frequency w,. 6-r” -- d 

Similarly we distinguish the instantaneous beam current l,,(d) for 
a linear RF waveform from the real inst,antaneous current 1(a). 

The equations of motion are 

$=-uohac, (21 

where h = w,f/wo. In the self-consistent field approximation the 

single-particle Hamiltonian 

w”has2 
H = ~ 

2 

is a constant of the motion, taking values H. 

Phase space distributions In a stationary state, the phase 

space distribution function $(E,$) should be a function of H 

Approximating d, q:C: 1, C; 5 1, we obtain the current. 

d%hf -Q~,zgi 
I(4) =7e 

x [,_~il-~)-~(2~-~a’?“:-“~~], 

which lets us write (4) to first order in E as 

(6) 

(‘i! 

(8) 

only; moreover WC know that, it is gaussian in E. Therefore Nonlinear detuning To first order in f and neglecting all 

1 - cosd + $ I;1 [I($) - I(O)] 
but the fundamental harmonic, the amplitude-dependence of the 
synchrotron frequency is found to be (see also [6]) 

Us 
w (7) = w o 

(4) ’ ’ 
1 - d - b2 (J.r,(~/Z) - I,(7/‘2)) 

8 2 1 t (9) 
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Figure 5: Synchrotron tune dependence on q. 
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Figure 6: Computed quadrupole mode BBTF (arbitrary units) 

Figure 7: Measured quadrupole mode BBTF (arbitrary units) 

where ‘I = H,iwoh& L: Hi (H’) is a “scaled Hamiltonian” vari- 

able: I,, and II are modified Bessel functions. 
This function is plotted in Figure 5 for SPEAR parameters and 

3 different values of <. For f < 0$/3: the equation w,(H) = w has 
a unique or no solution for N depending on the value of w. For 
E > u$/3! a bifurcation occurs: U:(V) has a zero and the equation 
may have 0, 1 or 2 solutions. 

Transfer function As a first step we use the equations of 
motion to find the time-evolution of the beam distribution after 

a sudden increase in energy: E I-+ E $6~ at time to. The resulting 
dipole moment is evaluated as an appropriate phase space aver- 
age. The next step is the extension to the case of an oscillating 
kick applied once per revolution (treated as having a frequency 
w in smooth approximation). With the first order approximation 
to +0(H) we obtain a dipole response with amplitude 

‘D( _ I.!!!! 
/ 

?e-‘h def ihi 

2w* 
-------=-> 
iJ.Cs) - w 

(10) 
w.0 

where 141 is the amplitude of phase acceleration due to external 
and induced fields. We note that the integral in (10) has a real 
principal part and imaginary contributions from up to 2 poles 
on the w-axis. Assuming the oscillation is of the form e-‘W’ with 
LJ 1 I’d, the measured response should be jfi\ = -iw,olDj. 

To include the force due to fields induced by the coherent mo- 
tion we calculate the average voltage seen by the bunch, 

liind('$b)b(dj)d$ _ tpioi 

2rhi: - ------,=-I 
242 

(11) 

which induces an acceleration IJmdi = (-iw,&/Z&)fi. Finally, 
the self-consistent (dipole-mode) BBTF is 

Ij 
-Z--- = -~I -- . 
I#&: & ,.L cuf, 

2&i 

(12) 

The results of numerical computations using SPEAR parameters 
close to those obtaining when we made the measurements are 
shown in Figure 3. Because of bunch-lengthening: the value of [ 
does not increase much with I. The upper limit of the integral 
in (10) is determined by the RF bucket height. Qualitatively the 
model reproduces the behaviour of the phase and the character- 
istic double hump in the amplitude of the BBTF which we found 
when the current was su%ciently large. However it is clear that 
rtqmvrme11ts al-z &!sirable. e”g. pushing the ttwnry to higher 
orders, inrluding J. pfoper representation of the non++.ussian na- 
ture of the dist,ribution in rhe longit~udinal coordinate. We intend 
to purslle this in future work. 

Computations of a quadrupole rnodp at zero current are shown 
with a corresponding low-cllrrcnt tneasnrcrnrnt in Figures 6 
and 7. 
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