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BEAM EMITTANCE GROWTH BY INTERNAL TARGET EFFECTS IN COSY 
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Abstract 

The luminosity of a thin target experiment can be in- 
creased by many orders of magnitude using a recircula- 
ting beam in a storage ring. A limiting factor is the 
beam emittance growth. In the interesting range of tar- 
get thicknesses (< 10-s radiation length) and proton 
energies (> 1 GeV) the usual multiple scattering appro- 
ximations and the Landau energy loss distribution have 
to be modified. The resulting beam emittance growth is 
studied in a Monte Carlo simulation taking the lattice 
transfer matrices and synchrotron acceleration into 
account. The numerical results are compared with simple 
analytical estimates. 

Introduction 

Actually several light ion storage rings for nu- 
clear and intermediate energy physics are planned, un- 
der construction or nearly completed. The cooler syn- 
chrotron COSY 111 which was recently approved to be 
built at KFA Jiilich exhibits an especially high maxi- 
mum energy (2.8 GeV kinetic energy for protons). The 
great attraction of all storage rings is the use of 
thin internal targets where the stored beam particles 
make on t!le order of a million passes per second 
through the target. This is in contrast to external 
experiments where the beam particles are dumped after 
one single target passage. 

However a limiting factor of using internal tar- 
gets is the beam emittance growth by small angle mul- 
tiple scattering and energy loss straggling. Therefore, 
electron cooling as well as stochastic cooling is fore- 
seen in most of the light ion storage ring projects. 
Unfortunately the maximum possible target thickness is 
limited by the cooling forces in such a way that self- 
supporting foils cannot be used in electron cooling nor 
in stcchastic cooling experiments. 

But there exists still the possibility to use 
self-supporting thin target foils in a recirculator 
mode without cooling. After beam injection and accele- 
ration the synchrotron is operated in a storage mode. 
The beam is deflected to the internal target by a 
slight bump in the equilibrium orbit. An important 
point of the method is that the mean energy loss intro- 
duced by the target foil is compensated by an appro- 
priate synchrotron acceleration. The useful beam life- 
time depends very much on the emittance growth which 
is caused by the internal target. It is the aim of the 
present work to study this emittance growth due to -6 
self supporting thin target foils (thickness $ 1.10 
radiation length) at proton kinetic energies ,t 1 GeV. 

Various aspects of the emittance growth by inter- 
nal target effects in an ion storage ring have already 
been published in literature.Veryuseful formulas for 
analytical estimates of the transverse beam emittance 
growth can be found in the work of H. Bruck 121. Using 
those formulas Cooper and Lawrence 131 studied thepro- 
blem of charge exchangeinflection into a proton sto- 
rage ring through a 150 ng/cm* thick carbon foil at 
800 XeV kinetic energy. Similar studies with respect to 
emittance growth and brightness gain were performed by 
Martin et al. 141. Further computer simulations and 
analysis of charge exchange injections are reported in 
refs. 15-71. H.0. Meyer 181 studied the interplay oE 
internal target heating and electron cooling in a Monte 
Carlo computer simulation. He obtained numerical 
results for transverse and longitudinal equilibrium 
phase space distributions with the Indiana Cooler at 

200 MeV proton ener 
Y 

and target thicknesses of the 
order of 100 ng/cm + 

Since the emittance growth depends very much on 
the details of the small angle multiple scattering and 
energy loss probability distributions the predictions 
of those distributions are critically reviewed in sects 
2 and 3. The Monte Carlo simulation program is sketch- 
ed in sect. 4. Numerical calculations are performed us- 
ing design parameters of COSY. Nevertheless, we believe 
that the results represent some general properties of 
the high-energy recirculator mode without cooling. The 
numerical example in sect. 5 refers to protons of 
1500 MeV kinetic energy and a 10 pg/cml thick carbon 
target. 

The energy loss probability density distribution 

In the presence oE multiple scattering effects 
the probability density distribution f(x,A) oE energy 
loss A by a layer of thickness x can be predicted by 
solving an appropriate transport equation.Landau 191 
derived a probability density distribution for thin 
targets under the following two restrictions : 

5 I &sax << 1 
E/I >> 1 

(1) 
(2) 

Here, hmnx is the maximum possible energy transfer in 
a head-on collision with a target electron and I is 
the mean atomic ionization potential. The scaling quan- 
tity 5 which is proportional to the target thickness x 
is given by : 

c = O.l535(MeV cmz/g)(Z/A)(z/t32)P x (3) 

Here, Z is the charge number, A the mass number and 
px the area1 density of the target, z the charge num- 
ber and S the velocity of the projectile in units of 
light velocity c. 

In the present work extremely thin targets and 
high proton energies are considered. For instance, for 
a carbon target of 10 ug/cm2 thickness and 1500 MeV 
proton kinetic energy one has 5 = 0.9 eV, I = 80.8 eV 
and Amax = 5.87 MeV. Thus the Landau condition (2) is 
strongly violated and the probability density distri- 
bution cannot be represented by the Landau function. 

Considering the limit of extremely thin targets 
the probability of multiple scattering tends towards 
zero and f&,A) +x w (A) for A > 0 where w(h) is the 
macroscopic single scattering cross-section. The high 
energy loss part of w(A) is well described by the 
Bhabhaformula for energeticknock-on electrons (see 
page 44 of ref. 10). In order to obtain a model des- 
cription of the low-energy loss part of w(A) in the 
region of atomic binding effects we follow closely a 
method developed by Ispirian et al. 1111. The result- 
ing probability distribution, i.e. the integral over 
the probability density distribution, is shown in 
Fig. 1. 

The small angle multiple scattering distribution 

For very thin targets the most recent and widely 
accepted theory of small angle multiple scattering is 
due to Sigmrnd and Winterbon 1121. F or anappropriate 
scaling Sigmund and Winterbon define the following 
dimensionless variables T (for the target thickness x) 
and 2 (for the scattering angle a) 
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Fig.1 Energy loss probability distribut'on, 3 protons on carbon (2250 MeV/c, 10 pg/cm ) 

T = TT a2 Nx (4a) 
?I a PSC 
a=ma (4b) 

Here, a is the screening radius, Nx the number of tar- 
get atoms/unit area, e the elementary charge, p the 
momentum and l3c the velocity of the projectile. The 
small angle scattering approximation (c(= sin a) is us- 
ed. 

The probability density distribution for scatter- 
ing into the spatial angle interval d& is given by the 
product ai f 1 (T,&) . The tabulated function fl(T,& for 
screened ion-atom potentials of the Thomas-Fermi type 
1121 is incorporated into the simulation program in 
such a form that smooth interpolations are possible. 
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Ffg.2 Small-angle scattering probabil.ity 
dfstribution, protons on carbon (2250 MeV/c, 
IO pg/cm2) 
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The range of f,(:,% is extended beyond the tabulated 
range 1121 using the Rutherford single scattering cross 
section (f, * T/2?++). This extension is necessary since 
we are interested in the beam distortions resulting 
from “J lo6 target traversals. Therefore, scattering 
processes occuring with a probability of Q 10m3 and 
less must also be taken into account. This is especial- 
ly important in view of the fact that the mean square 
of a scattering distribution depends strongly on the 
tails of the distribution. The resulting probability 
distribution is shown in fig. 2. 

The Monte Carlo simulation program 

The transport of A particle is described in first 
order approximation using the transport matrix 1131 R. 
Several steps are performed for one revolution : (i) 
transport from target to the cavity (ii) momentum 
change in the cavity according to the actual phase lag 
(iii) transport from the cavity to the target (iv) ran- 
dom change of the angle deviations in the horizontal 
and vertical plane and the momentum deviation. Thenum- 
ber of steps per revolution can be changed according 
to special requirements. For instance, beam scrapers, 
cavities and internal targets can be inserted at seve- 
ral positions. For the start the coordinates of a cer- 
tain number of particles can be defined randomly accor- 
ding to a six dimensional gaussian phase space ellip- 
soid distribution. There exists also the possibility to 
start with a sharp 5-like pencil beam, i.e. all parti- 
cles start at the coordinate of the reference particle. 
The phase space conservation requires det R = 1. This 
condition is guaranteed by a special constraint in or- 
der to avoid the accumulation of many small numerical 
errors. 

Numerical results and discussion 

The resulting growth of the transversal pmittance 
the survival probability and the relative momentum 
deviation as a function of the turn number are shown in 
figs. 3 and 4. The emittancesc are defined using the 
variances and covarinnces of the distributions e.g. 
Ex = (0,“2 - o?,,)‘/*. The cal culntions are performed 
for the internal target position TP2 using an achroma- 
tic mode of operation. The B-values at TP2 are 
6, = 1 .93 m and 6, = 4.52 m. The synchrotron accelera- 
tion voltage amplitude is LJo = 3 kV, the harmonic num- 
ber h = 1 and the transition energy ytr = 2.458. The 
bucket size AE = 15.1 MeV is much larger than the ma- 
ximum energy loss of 5.87 MeV so that the particles 
remain stable within the separatrix. 

In order to record the emittance growth from the 
beginning we start with a pencil beam of 100 particles. 
The transversal beam emittances are limited by x - and 
z - beam scrapers of rt 6 mm slit width which are locat- 
ed for numerical simplicity at the target position 
TPZ. Particle losses start at about 120 000 turns and 
amount about 30 Z after 300 000 turns (see fig. 3). 
They are exclusively due to the axial beam scraper 
which represents a more stringent emittance limit than 
the radial beam scraper because of the larger B-value. 
The resulting limitation of the axial beam emittance 
can be seen in fig. 3. 

The periodic structures in fig, 4 reflect the ef- 
fect of the synchrotron oscillation which can be seen 
because of the low statistics. The rms width of the 
relative momentum deviation is on the order of 3 lOa 
after 300 000 turns. The history of a selected single 
particle in the longitudinal phase space is shown in 
fig. 5. The trajectory of the particle is characteriz- 
ed by concentric ellipses reflecting the well known 
synchrotron oscillations. One sees that from time to 
time the particle suffers larger energy losses yield- 
ing big changes of the synchrotron amplitude . 



716 

emittance/nun mrad survival probab. 

-\ 
:,-&p* 

,t,G :,? 1 
h, -7 i ,i 

+f%;. ‘,q 
*I ‘Lb! -5 ',' 

7 , . , 

1.0 1 
. 

I +f IL.. r' I 

0.5 1 
,i 1 r"T"c 

I dm-- 

_* 
0.0, I I I I I ) 

I ’ ’ ’ ’ ” ‘1 ’ 
1 3 

1.0 

0.9 

.0.8 

0.7 

X105 Turn-No. 

riq.3 Emittance (left ordinate in mm mrad) 
and survival probability (right ordinate) 
vs. turn number 

0.04 
Adelta/ 1 

x105 Turn-No 
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Fig.5 History of one single particle in Lon- 
qitudinal phase space (rklative momentum de- 
viation in P, vs. phase angle in deg) 

According to refs. 2,3 the transversal emittance 
growth can approximately be described by the following 
simple expression : 

E = l/2 N 3 3' (5) Ens 

Here, N is the number of turns, B the value of the 
betatron amplitude function at the target location and 
8rms the rms width of the plane projected scattering 
angle in a single target traversal. Thus, one expects 
a linear emittance growth with turn number as long as 
particle losses by beam scrapers are negligible. 
Neglecting the statistical fluctuations the numerical 
results are in accordance with this prediction (fig. 
3). Comparing ox and es one can also see that the 
emittance growth is proportional to the B-values. An 
upper limit estimate of B,,, can be obtained using the 
Particle Data Group Formula without the logarithmic 
term Or,, = (14.1 MeV/pZc) (x/xrad)l/2 where xrad is 
the radiation length (= 42.7 g/cm* for carbon). This 
yields erms = 3 10T6 rad and ex = 2.6 mm mrad after 
300 000 turns which is a factor 2.4 larger than the 
calculated values. Thus for a rough estimate of the 
emittance growth one can use those formulas. 

The numerical results demonstrate the feasibility 
of an internal target experiment with self-supporting 
foils in COSY. Only 30 % of particles are lost after 
300 000 turns. Increasing the scraper widths or 
decreasing the B-values at the target location by a 
factor 2 yields the same survival probability of 70 % 
for 1.2 lo6 turns. The resulting emittances scale 
according to eq. 5, i.e. they increase either by a 
factor 4 or 2. 
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