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Abstract 

An optimization method for the strength of sextupole 
magnets is studied and a computer program CATS 
(Correction of Amplitude-dependent Tune Shift) is 
developed. By applying this method to the design of 6 GeV 
storage ring in RIKEN SR Project [l], the dynamic aperture 
of the storage ring is remarkably enlarged and its 
effectiveness is confirmed. 

Introduction 

The low emittance lattice is generally characterized by 
its intrinsically large chromaticities. The large 
chromaticities result from the presence of the strong 
quadrupole magnets used to focus the charged particles 
especially at the dipole magnets. The linear part of 
chromaticities can be compensated by adding at least two 
families of sextupole magnets in the dispersive sections. 
These sextupoles, on the other hand, create harmful 
nonlinear effects (amplitude-dependent tune shift) on the 
large amplitude betatron motions and lead to substantial 
reduction of the dynamic aperture. To achieve sufficiently 
large dynamic aperture for the injection and for the long 
beam lifetime, other families of sextupoles must be 
introduced and their arrangement must be optimized. Thus, 
it is important to develop a method for the optimization. In 
this paper, we present a method for the optimization with a 
computer program CATS and show results of its application 
to our lattice design. 

retrcal found- 

The degree of amplitude dependence of the tunes is 
used to estrimate harmful effects of the sextupoles on the 
betatron motions. Regarding sextupole fields as small 
perturbations, canonical perturbation theory [2-51 can be 
employed to describe the betatron motions with which the 
following “amplitude dependent tune shift formulae” are 
derived. 

AV xc = Cl 1 2Jx + Cl2 I 2Jy . (1) 
wyc = C21 2J, + C22 I 2Jy , (2) 

where 

x = v 2J,b, cos+, , y = qy. cos@y > 

and J, (Jy) denotes the horizontal (vertical) action 
variable and ex (ey) is the corresponding angle variable. 
The suffix c in the tune shifts notifies that the analysis is 
made within a single cell, Four coefficients cij 
(ij=1,2) in Eqs. (1) and (2) are determined by the cell 
structure. These coefficients are expressed in the 
harmonic expansion, 

Cl1 = -18 Z, [A3m2/(3vxc-m) 
+ 3Alm2/(vxc-m)l , (3) 

Cl2 = C21 = +36 X, lAlmBlm/(vxc-m) 

- B+m2i( v+c-m) - B..m2/(v-c-m) I . (4) 
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C22 = -18 . Em [4B Im2/(vxc-m) 

+ B+m2/(v +c-m) + Bem2/(vec-m) 1 , 
where 

(5) 

vzc = vxc c 2vyc 

The summation with respect to m extends to -m < m < +m. Five 
additional coefficients Al m, A3m, Bl m, and B,, in Eqs. 
(3)-(5) are composed of the sum of products of sextupole 
strength and betatron phase at the location of the 
sextupole magnets as follows; 

Aim = xk (Sk/48X) COS( Wx - Vxce + me )k , (6) 
A3m = Ek (Sk/48n) ’ CORp( vx - vxce ) + me ]k , 

B lm = zk (Skb/48n) ’ CoS( Wx - Vxce + me )k , 

B +m - - zk (skb/48K) COs( vf- v& + me )k , 

(7) 

(8) 
(9) 

where 

Sk = t[!& 3’2B”(y)Ll/BPlkv 

Skb = I[PX “2PyWy)Ll~BPlk. 
wi= I’l/Pids (i=x,y), ~+=~x*2Vy, 

e = 2x. (s/c), c : cell length, L : sextupole length. 

As seen in the denominators of Eqs. (3)-(5), the first 
and third-order resonances driven by sextupoles 
are 

V -N, xc - (10) 

3.v -N, xc - (11) 
vxc + 2. vyc = N 3 (12) 

where N is an arbitrary integer. 

Qutimization method 

Basically, for a given lattice, the dynamic aperture is 
enlarged when the harmful resonance driving terms are 
sufficiently suppressed by introduction of additional 
sextupoles. To suppress the resonance driving terms, it 
must be considered that the distribution of the resonance 
driving terms depends greatly on the lattice structure and 
influences the optimum sextupole arrangement. 

For example, if harmful resonance driving terms are 
localized in the vicinity of the working point per cell, they 
may be damped easily without raising ICiil. If, on the other 
hand, resonance driving terms in a widz range of m must 
be suppressed, it may not be so easy with few additional 
sextupoles. Therefore, one’ must make a careful observation 
of how they are distributed. As an effective tool for the 
observation, the program is develooed to visualize 
resonance driving terms in various form\. Our method for 
optimization is described as follows: 

For a given lattice with only chromaticity correction 
sextupoles, the distribution of resonance driving terms, 
especially that in the vicinity of the working point, is 
checked. 

SteD-2 
The resonance driving terms to be damped are selected 



from the distribution and arrangement of additional 
sextupoles ( their initial strength and locations ) is 
determined. 

Selected resonance driving terms are suppressed with 
CATS. 

s.lsa 
Dynamic aperture is checked. If sufficiently large 

dynamic aperture is obtained, the step for optimization is 
terminated here. If not, go on to the next step 

In the case that ICiil values are increased, ‘Ciil 
multiplied by an appropriate weight function are added io 
the objective function of CATS and go back to Step-3. 

Even though ICijl are decreased and selected resonance 
driving terms are damped, if the dynamic aperture is not 
enlarged, resonance driving terms which are far from the 
working point per cell are added step by step to the 
objective function of CATS and go back to Step-3 

In the case that selected resonance driving terms are 
not damped. go back to Step-3 with the change in the 
sextupole arrangement or with introduction of other 
sextupoles. (Since the cancellation of resonance driving 
terms depends on the betatron phase at the sextupolcs, it is 
useful to change sextupole locations or to introduce other 
sextupnles.) 

Proeram CATS 

For the given linear optics and the sextupole 
information, CATS optimizes the strength and locations of 
sextupoles. This program has following functions : 
(I) Cij values are calculated from the distortion functions 

[5] and also the components of harmonic expansion of 
C ij are calculated from the harmonic expansion 
formulae 0 f amplitude dependent tune shifts, 
Eqs.(3)-(9j. 

(2) Linear chromaticities are corrected with two 
specified families of sextupoles. 

(3) Strength of maximum twenty scxtupoles per cell is 
optimized with an appropriate objective function. 

(4) If the sextupoles in the dispersive sections are used for 
optimization, the strength of chromaticity correction 
sextupoles is readjusted at every fitting loop 
automatically. 

The above optimization method is applied to the design 
of two kinds of 6 GeV storage ring lattice, Chasman-Green 
(CG) lattice and Triple Bend Achromat (TBA) lattice. Lattice 
functions are depicted in Fig. l(a) and l(b). 

In the case of CG lattice, harmonic expansion of Cij has 
just one large peak at a component of m=l which is mainly 
composed of the first-order resonance (v,=l) driving term 
as shown in Fig. 2(a). Therefore, this peak is suppressed by 
CATS with only two families of sextupoles in the dispersion 
free sections. Though other components at positive side of 
m arc newly excited, the component of m=l inducing the 
first-order resonance is suppressed completely as shown in 
Fig. 2(b). The dynamic aperture obtained before and after 
optimization is shown together in Fig. 3. The dynamic 
aperture is enlarged markedly after the optimization. 

In the case of TBA lattice, harmonic expansion of Cij 
has a few peaks near the working point and not only first 
but also third-order resonance driving terms are excited. 
For the suppression of complicated spectrum shown in Fig. 
4(a), additional sextupoles are introduced in dispersive area 
to increase the degree of freedom for the optimization. 
With five families of harmonic sextupoles (including two 
sexrupoles in dispersion free sections), all kinds of 
resonance driving terms from m = 1 to m = 5 in the vicinity 
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of the working point are adequately suppressed as shown 
in Fig. 4(b). Consequently, the dynamic aperture is 
enlarged for the TBA lattice as well, which is shown in Fig. 
5. 

The dynamic aperture not only of an ideal ring but also 
of a practical ring (the ring with magnetic errors) is 
studied for CG lattice. In this case, twofold optimization ( 
combination of the working point optimization and the 
sextupole arrangement optimization) is carried out. The 
optimal working point is searched by the tracking 
calculation changing the the tunes by small degrees 
around the desired working point. Due to the selection of 
appropriate working point, reduction of the dynamic 
aperture is minimized as shown in Fig. 6. 

An optimization method for the strength of sextupole 
magnets is studied and a program CATS (Correction of 
Amplitude-dependent Tune Shift) is developed. In CATS, the 
coefficients describing the amplitude dependence of the 
tunes as well as their harmonic components are used as 
criteria of the optimization. Through its application to the 
design of two kinds of the low emittance lattice, CG lattice 
and TBA lattice, effectiveness of this method is confirmed. 
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Fig. 1 Configuration of lattice functions px, py, dispersion 
function Xp for one cell. (a) CG lattice. (b) TBA lattice. 
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Fig. 2 Harmonic expansion spectrum of Cij for CG lattice. 
(a) Before optimization. (b) After optimization. 

E 
E. 
> 

80 

60 

X (mm) 

Fig. 3 Dynamic aperture of CG lattice obtained after 
optimization (white squares). For comparison, the dynamic 
aperture before optimization is also shown (dark squares). 
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Fig. 6 Dynamic aperture of CG lattice in the presence of 
errors (dark squares). Calculation is made for five 
arbitrary machines. For comparison, the dynamic 
aperture of the ideal machine is also shown (white 
squares). 
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Fig. 4 Harmonic expansion spectrum of Cij for TBA lattice. 
(a) Before optimization. (b) After optimization. 
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Fig. 5 Dynamic aperture of TBA lattice obtained after 
optimization (dark squares). For comparison, the dynamic 
aperture before optimization is also shown (white squares). 
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