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Summary 

The coupling mechanisms of synchrotron and 
betatron motion have been intensively studied in the 
past by various authors. Piwinski and Wrulich [I] 
analysed firstly the coupling effect caused by a 
non-vanishing dispersion in the accelerating cavities. 
They also found that not only the betatron motion is 
influenced by the synchrotron motion but also the 
opposite effect, namely a perturbation of the 
synchrotron motion via the path lengthening effect 
takes place. However, their theory is restrticted to 
the linear sideband effects. Suzuki [2] developed a 
canonical perturbation theory for the nonlinear 
Hamiltonian describing synchro-betatron resonances 
induced by dispersion. This theory is based on the 
formalism of Corsten and Hagedorn [3]. In this 
contribution we develop a theory of synchro-betatron 
motion influenced by dispersion in cavities and 
longitudinal wakefields. This theory starting from the 
coupled nonlinear differential equations for the 
vertical betatron motion and the synchrotron motion is 
not only valid in the neighbourhood of resonances but 
for any values of the synchrotron and betatron tunes. 
After introducing the coupled equations we succeed to 
decouple the synchrotron equation from the betatron 
equation by neglecting the path lengthening effect. 
This is a valid approximation since the longitudinal 
emittance is usually much larger than the transverse 
one. After this decoupling we solve the synchrotron 
equation of motion by linearization. Inserting the so 
obtained result into the betatron equation finally 
ieads to a forced linear oscillator. The excitation 
coefficients for the resonances due to dispersion in 
cavities and longitudinal wakefields are then 
calculated in closed form. 

1. Equations of motion 

In electron machines usually the vertical 
emittance of a beam is smaller than the horizontal 
one. Thus the influence of synchrotron oscillations on 
the vertical betatron motion is stronger than on the 
horizontal motion. So in a first step we evaluate the 
coupling effects in this plane only. The equations read 
as : 
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The independent variable $ is the angle in radiants 
along the mach'ne ring. Dots mean differentiations with 
reference to 4. BY Yi we denote the vertical 
coordinate of the ith path particle in the bunch while 
6i means the relative energy deviation of this 

particle at a given angle. By K and K' we describe the 
quadrupole and sextupole distributions in the ring. R 
is the machine radius, r, the classical electron 
radius, N the number of particles per bunch and y the 
usual energy Lorentz factor. Finally F denotes the 
transverse wake function and ti the arrive1 time of 
the ith particle. The momentum compaction factor is 
written as C( while the dispersion function in our 
notation is n. Note that ' means differentiation with 
reference to the lengths s around the machine ring. The 
voltage of the cavity and the elementary charge are 
indicated by V and e respectively. G and H describe the 
monopole and dipole longitudinal wake functions. 
Finally A$1 and ys denote the RF phase of the ith 
particle and the synchronous phase, respectively. The 
quantity h represents the harmonic number. 

2. Simplifying assumptions 

The above coupled equations (l)-(3) are the 
general ones for the coupled synchrotron-betatron 
motion. In this contribution, however, we make some 
simplifying assumptions : 

(a) For the transverse motion we neglect sextupoles 
and wakefields. These terms will be treated in future 
papers. 

(b) For the synchrotron motion we neglect the 
path-lengthening effect due to the betatron 
oscillations. This is a valid approximation if the 
dispersion and its derivative are not too large because 
the longitudinal emittance is usually much larger than 
the transverse one. This assumption has also been 
confirmed by [using computer simulations. 

(c) We neglect the longitudinal dipole wakefunction H 
and keep only the monopole wakefunction G, since the 
former is usually small [4]. 

(d) We assume that the synchrotron oscillation is 
linear and thus described by the harmonic oscillator 
solution : 

AYi = a COS(Q,$ + $0) (4) 

After these simplifications and by applying the usual 
Courant and Snyder transformation [5] for the 
transverse coordinate ygi : 

yBi = 8’12 Y; de = e (5) 

the final equation for the reduced betatron coordinate 
Y reads as : 

(j2 *J/2 
Y--J-$- [neyjf+k( ny$- 11 (6) 

while the equation for the momentum deviations 6i 
becomes : 
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By yBi we mean the betatron-part of the transverse 
motion yi according to the decomposition : 

Yi = Ygj + Any 

The wakefunction G may be written as \6] : 

(8) 

G(t) = & -[exp(-iwt) Z,(w) dw (9) 

Knowing the longitudinal impedance ZL(W) together 
with Eqs. (9). (4) and (7), the right hand side of the 
equation for the reduced betatron coordinate Y 
(Eq. (7)) is fully known and thus our problem reduces 
to solving a linear forced oscillator. 

4. Solution of the equation for Y 

In order to obtain the final result for Y(e) in 
terms of trigonometric functions with resonance 
denominators we have to expand the dispersion part as 
well as the wakefunction part of Eq. (7) into Fourier 
series with reference to $. Together with Eq.(4) and 
using elementary properties of Besselfunctions we 
find : 
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The wakefunction part can be expressed by replacing 
the sum over the j-th particle by an integral using the 
normalized charge density p(t,+). The wakefunction part 
is denoted by W : 

W = 2aRe 1 6($-o ) 1' G(t-t') p(t',$) dt' (11) 
k k -m 

In case of electron machines we assume a Gaussian 
bunch : 

P(t,e)) = 2 exp [-t2/(20Z)] (12) 
t 

We further assume a broad-band-resonator impedance : 

RL 
'Lcw) = I-iQ[w/w, -w/w,j (13) 

Here RL is the peak value of the longitudinal 
impedance, Q the quality factor and wr/(iln) the 
resonance frequency. From Eqs. (9) and (11) and the 
Fourier transform of p : 

p(t,$) = lrn i (~,g) exp(-iwt) dw (14) 
-co 

we obtain the following Fourier representation of W : 

w=x 
& 
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where x is a constant given by : 
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Ne2RE 

E 
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Here we have made use of t = AY/( hwc) where w. is the 
revolution frequency. For Al we used Eq. (4). The 
coefficients Am are given by : 
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The complex quantities W, and w2 are defined as : 

WI,2 = + wr m/(29) ; i%-/(zq) ( 18) 

while the complex error-function as usual has been 
denoted by w. Finally we may expand the periodic 
6-function in Eq. (15) : 

6(+-$k) = & ,y, exp[in($-@k)l (19) 

Now the complete right hand side of the Y-equation (6) 
is expressed in terms of trigonometric functions. So 
the practical solution of Eq. (6) becomes easy and can 
be evaluated as linear combination of the same 
functions. We write here the solution for one cacity 
located at the Courant and Snyder angle e = 0. The 
Y, are defined as Y(2nn + E) (= at the exit of the 
thin cavity). 
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The expressions B, and B, contain the exc.itation terms 
for synchro-betatron resonances due to dispersion and 
wakefield effects. 
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The ay,. By, ny and n' 
r 

in Eqs. (20) and (21) 
are the usual Twlss parame ers at the cavity position 
while CC, in Eq. (22) is : 

( (-l)m/2 
am= < 

sinlys . . ...*.* (m : even) (23) 
( (-l)(m-1)/2 sinys . . . . . . . . (m : odd) 

We applied the above analytic results to the case of 
LEP with one single cavity. The value of Qs has been 
chosen to 0.09 while the fractional part of the 
vertical tune is 0.20. The formulae have been evaluated 
using the program code SYBILLE written by the authors 
of this contribution [71. In Fig. 1 the betatron phase 
space (Y, dY/d6) at 0 = (O+E) (cavity exit) is plotted 
for the first 2000 points. The vertical dispersion has 
been fixed to a value of ny,= 5 cm. In this case 
wakefields have not been taken into account. We observe 
clearly the existence of an island type motion around 
the fifth order fixed points caused by the associated 
linear vertical betatron motion. In Fig. 2 exactly the 
same set of parameters has been used but now also the 
excitations due to longitudinal wakes are taken into 
account. We see that the islands widths have strongly 
increased which indicates a strong contribution from 
the impedance-caused wakefields. 

For the case of no wakefields the agreement of our 
results with the ones of a simulation program written 
by one of us (T. Suzuki) [7] is excellent. No 
simulation for the combined wakefield-dispersion effect 
has been performed by us so far. This will be done in 
some later work. .As a conclusion we may state that it 
is possible to describe the effects of coupled 
synchro-betatron motion in an efficient way using well 
known theories of nonlinear differential equations and 
perturbation techniques. Extension to even more effects 
like transverse wakefields and even sextupole magnets 
seems basically possible and will be considered in 
future papers by us. 
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Fig. 1 - Eetatron phase space (y,y') with dispersion 
in cavities. 
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Fig. 2 - Betatron phase space (y,y') with dispersion in 
cavities and longitudinal wakefields. 


