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1. Introduction

In this contribution we study the on-momentum
nonlinear eguations of motion for the coupled
transverse motion of a single charged particle in a
storage ring. We seek for the maximum initial linear
amplitudes in the two transverse directions x and y
which lead to bounded particle motion as t tends to
infinity. Although we restrict ourselves to sextupole
fields in this paper, we may easily extend the method
to any order multipole.

The aim of this work is to derive an analytic
approximate expression for the dynamical aperture. We
approach the solutions for x and y by use of a
classical secular perturbation theory {1}, [2]. Every
coefficient of the perturbation series can be expressed
as an analytic function of all the Jlower order
coefficients. Although perturbation theory if it is
evaluated to certain specific order leads only to an
approximation in terms of bounded (trigonometric)
functions we may derive information about the stability
limit by considering the convergency radius of the
general perturbation series. This is done in the
present paper by deriving an aproximate analytic
expression for the n-th order perturbation contribution
of the whole series using only results up to second
order. The actual calculations have been performed for
the fully two dimensional case but for simplicity we
shall explain only the one dimensional case of the pure
horizontal motion. All the details for two dimensional
motion can be found in [3] and [4].

2. The equations of motion

The nonlinear egquations of motion can be found at
many places in the literature (eg. [3], (4}, (5], [6]):
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95 K(s) x - 3K'(s) (x* - ¥7) =0 (1)
d2X 1 -
ST HKS) y+K(s) xy =0 (2)
After transformation to Courant and Snyder
variables (7]
_ _ds __ds
0y = GeBr ° By 5;5; (3)

the linear parts of these equations become of the

linear harmonic oscillator type :
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We choose the initial conditions :

x{0) = A, dx/de,(0) = 0, y(0) = B, dy/dey(O) =0 (6)

Now we ask for the maximum values of A and B which
lead to bounded motion if 6y and B8y tend to
infinity.

3. Secular perturbation theory

For this part, we restrict ourselves to the case
of the pure horizontal motion x(8yx). The basic method
remains the same for coupled motion in the x, y-plane.

Detailed information about this case is contained in
[3] and [4]. The equation for the horizontal motion
is
d?x

L2 a?ox + ef(e) =0, f(0) = - L k(o) Q® 8572(0) (7)

The basic idea of secular perturbation theory [1],
[2] is to expand x as well as the total tune Q as power
series in the control parameter e :

X = Xg + & X, ¥ €2 xp + ... v eMxg + ... (8)
w=1 +euw + e? wy + ...+ eMwp + L., (9)
Q = Qou (10)

If we _transform the independent wvariable 9

according to 8 = 6w we find :

.

W2 X+ Q% x v f(8) x2 =0 (11)
If we insert the perturbation expansion [8] into
[7] we find a general expression for the n-th order

perturbation contribution :

.. 3 - nfl n-1
X'+ Q% xp = - f(8) '21 Xj *p-1-j = L

ij - j (12)
j= J=0

The @, are defined as :

n
Qp = 'L Wi Wn.i (13)
i=0
As we can see the n equations for x; to xp
contain n free parameters w;j for the nonlinear

frequency correction. According to [3] and (4], these
corrections are chosen such as to cancel secular terms
in any of the n eguations for the perturbing contribu-
tions. Secular terms are defined as trigonometric
contributions to thg right hand side of (12) propor-

tional to cos Q8 and sin Q8. This would
result in a linearily increasing solution of (11)
leading to a non _uniformly valid perturbation

representation of x(8). The solutions xp can be
found by recursively solving the system (11) and up to
?nd order are given in [4] :

xo(é) = A coS Qé (14)
x,(8) = AZ q,(8) - A% q,(0) ;os Qe
with ) )
ai - 1w LR - 09
x,(8) = A* qp(8) - A3 gy(0) cos Q@ (17)

with



-1 0 2cos| (mnzQ)s ]
QZ(B) B 8 nzo HEO aman [ (Qz'nz)[Qz“(miniQ)2J
s [ (pQenzm)o |
- (3Q+n n f - mQ*n*m)‘J J (18)

p=1,3

soefficients of
f(6) _to be a

The ap are the Fourier
f(8) in Eq. (7). We assumed
symmetric function with respect to 6 = 0, The
frequency correction w, is given in [4]. The first
order contribution to the nonlinear detuning vanishes.
Clearly, we observe the occurence of integer and third
integer resonance denominators in x; and also fourth
integer resonances in x,.

4. Convergency radius of the perturbation series
and dynaminal aperture

The perturbation results describing the actual
solution x{8) to a certain approximation do not
directly tell us something about the limit to unbounded
motion since to any order we obtain contributions in
terms of bounded (trigonometric) functions (at least
off-resonances, i.e. for any irrational tune). On the
other hand, we may deal not only with perturbation
results to a specific order, but with the perturbation
series as a whole. It has been the idea of cne of us
{H. Moshammer, [4]) to derive an approximate expression
for the n-th order perturbation contribution as an
analytic function of n. Then all coefficients of the
series (8) are given analytically and any formula for
the convergency radius of a Taylor series can be used.

Usiag Eg. (12) for the n-th order contribution
xn(8) we may prove that x, may be represented
as
x, = - x;(0) cos(Q8) + x' (6) (19)

with

P ¢ s

xi (8) = 1 ag (8) (20)

2=1

where the gy are solutions of the following
equations :
e ~ n-1 1 n-1
dn* Q%an = -f(9) J} 9 n-1-3 - el jg Xj n.j (21)

The coefficients cMy in (20) are given by :

n-1
Noan+l v 1ym l:rﬂnlL ______&1l_______
@A mio( 2 (n+1)T ™ K Tky! e Ko IqJ(O (22)
where :
njl njl
n=t + ] jkj 5 m= [ kj (23)
j=1 j=1

With (8), (19) and (20) we then find the formally exact
solution for x{®)

x(6) = Acos(Q8) + ¥ (qu(5)-cos(Q8) ax(0))
=0 n=1

C (24)

® s

Ht~8

A necessary (possibly not sufficient) condition for
(24) to converge is the convergency of all the sums :

697

(25)

We use d'Alembert criterion for convergency of an
infinite series which tells us that (25) converges if :

S

N

e | T <1 (26)
e

5. Restriction to second order perturbation theory

The coefficients chy in the analytic
expression for x(8) (Eq. (24)) explicitly contain
the pertubation contributions g, being defined by
(21): The explicit analytic solutions for ql(ﬁ) and
g2(6 ) are given by Egs. (16) and {18). The idea is

to keep only g, and g, in (22) and to neglect all
higher order functions gq; where ¢ > 2, This
approximation still keeps the n-dependence of cy

in (22) so that d'Alemberts criterion (25) can be used
to determine the approximate convergency-limit of the
series (24). Since the coefficients c¢fy contain the
oscillation amplitude A (Eq. {(21)) the soc-obtained
criterion at the same time results in an expression for
the Timiting stable amplitude. Using (22) together with
(26) we find a result independent of & in the following
form :

1 92 (0)
Min= | “ovEer |0 M T ' 27
1im q,(D)¥G(X) ql(O)‘ (27)

with
2+l

(3a+k+4)! (22+2)! R

Tim 1+k\0 (2+1-K)1(8+5) [(2k) T * k
6002 g 2+l (28)

(22+3)(22+4) ) (3g+ltk)!(2e42)1 g

koo (2-K)1{42+5)1(2k)!

Unfortunaly G(X) cannot be evaluated in closed form.

However, we may prove [3] that G has a simple
asymptotic behaviour :

s) ~Za ;A . (29)
For A = 0 we obtain G(0) = 16. From {16, (18), (27) and

(28) we see that the leading effects of the third and
fourth integer resonances are contained in this theory.

6. Two-dimensional motion

We now ask for the limiting amplitudes A and B in x-
and y-direction according to Eqs. (4), (5) and (6). The
method used is precisely the same as the one explained
in Chapt. 3, 4 and 5 and we just write down the final
results for A1im and Byip. A1l the details of the
derivations can be found in [3] and [4]. The results
again up to second order are given by :

Apim = Min A, Ag, A3, Ay (30)
Byim = Min B, By, B3, B,] (31)
with . ;
Ay = |4q11(0)l' » Az = 2|27q21(0)‘-1 2,
Az = |p‘1(0)|-l, Ay, = lpzl(o)i-1/2 (32)
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B,= |a22(0)|"1/2, By = 2|27p52(0)| 172,

Bg=2|27p11(0)q12(0)\‘L/Z, Bq=l4q11(0)q12(0)~‘1/2 (33)

where q,,, 4qy2, G255 Q225 Pyy, P2y and py; are
solutions of the following linear second order
differential equations :
d’q 2 1.2, 2
EgziL + Q811 =5 G k' (5)85/2(s)cos? (0x0x) (34)
g, 2 1.2, ;/2 2
402, *0,01,= - 5 Q, k'(s)B;/%(s)By(s)cos(Qyby) (35)
d2q21 2 2, 5/2 2
ng;" + QXQZl = QX k (S)BX (s)ay,(0x)cos“(Qyuby) (36)
szzz 2 2 3/2
o2 + QXQ22 = —ka'(s)ﬁx [Bx(s)a,2(8x)cos(Qxbx)+

X

+ Byls)py (0y)cos{Qyey) ] (37)

d?p,, 2 2 2 2
qupm - k(18,585 “(5)cos (a0 )cos (0y0y) (38)

d2
T pzy = -QK(s)8) (3)84/2(5) [y, () cos (0y0,)+
Y
+ pyi{0y)cos(Qyoy) ] (39)
dep-
TRz -0k ()8 ()8, 7 (S)ayz(8x)cos(Qysy)  (40)
Y

7. Application of the results and discussion

We applied our theory to the existing model of the
LEP machine containing all setupoles and all the
experimental insertions. In Fig. 1 we vary the
horizontal tune Qyx for a superperiod (one quarter of
the whole machine) from 17.25 to 17.75 and calculate
the maximum _initial amplitude Ajjp on the y-axis
[x(0) = A, x(0) = 0, y(0) = 0, y(0) = 0] at
the high-g interaction point. The stars correspond to
the analytic method while the crosses are the tracking
results for 400 turns. Except in the interval
Qg = 17.35 to Qy = 17.45 the analytic results agree
reasonably wel)l with the tracking (kick-code). Clearly
we see the effect of the third integer resonance
(Qx = 17.333...) and half integer as well as fourth

integer resonances at Qy = 17.5, Qx = 17.25 and
Qx = 17.75 respectively. The dip at Qy = 17.6 due
to a fifth order resonance (3:5) indicated by the
tracking program is not covered by second order

perturbation theory as can be seen from Eqs. (16) and
18). In Fig. 2 we start the motion on the y-axis
x(0) = 0, x(0) = 0, y(0) = 8B, y(0) = 0]

and look for Byjp as function of the strength of the
sextupole family SF1. Again the agreement with tracking
is relatively good although a certain “overshooting"

of the analytic results with respect to tracking is

observed. Probably an extension of the perturbation
theory to third order would further improve the
results,
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Fig. 1 - Maximum stable initial amplitude on the x-axis
for LEP taken at the low-8 interaction point as a
function of the horizontal tune Qy for a superperiod.

TSRS - 400 0K - 158 OF - WSS Pel - W DED  MRADKING et MALTIC T

STMCTLAR LOPEY  SEATPLE  BF1 TRACKING. 120 00 SEC N4MT. METWOD. % 00 SEC

L R

60

MAXIM, AMEL 1TUDE
20

v

40 Va2l e | ow | e | aw e | 2ha Y3 v e s
BEXT-ACHSE  »13 '

Fig. 2 - Maximum stable initial amplitude on the y-axis
for LEP taken at the low-g interaction point as a
function of the strength of the sextupole family SF1.
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