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1. Introduction 3. Secular perturbation theory 

In this contribution we study the on-momentum 
nonlinear equations of motion for the coupled 
transverse motion of a single charged particle in a 
storage ring. We seek for the maximum initial linear 
amplitudes in the two transverse directions x and y 
which lead to bounded particle motion as t tends to 
infinity. Although we restrict ourselves to sextupole 
fields in this paper, we may easily extend the method 
to any order multipole. 

For this part, we restrict ourselves to the case 
of the pure horizontal motion x(0,). The basic method 
remains the same for coupled motion in the x, y-plane. 
Detailed information about this case is contained in 
[3] and 141. The equation for the horizontal motion 
is : 

The aim of this work is to derive an analytic 
approximate expression for the dynamical aperture. We 
approach the solutions for x and y by use of a 
classical secular perturbation theory 111, [2]. Every 
coefficient of the perturbation series can be expressed 
as an analytic function of all the lower order 
coefficients. Although perturbation theory if it 1s 
evaluated to certain specific order leads only to an 
approximation in terms of bounded (trigonometric) 
functions we may derive information about the stability 
limit by considering the convergency radius of the 
general perturbation series. This is done in the 
present paper by deriving an aproximate analytic 
expression for the n-th order perturbation contribution 
of the whole series using only results up to second 
order. The actual calculations have been performed for 
the fully two dimensional case but for simplicity we 
shall explain only the one dimensional case of the pure 
horizontal motion. All the details for two dimensional 
motion can be found in [3] and (41. 

$tQ"ox t Ef(e) x2=0, f(e) = - : K'(e) Q2 es/z(e) (7) 

The basic idea of secular perturbation theory [l], 
[2] is to expand x as well as the total tune Q as power 
Series in the control parameter E : 

x = xg + E x, + E2 x2 + . . . + En xn + . . . (8) 

w=l + E WI + E 2 
w2 t . . . + En on t . . . (9) 

Q = Qow (10) 

If we -transform the independent variable e 
according to 8 = ew we find : 

&I2 x " + Q2,, x t E f(e) x2 = 0 (11) 

If we insert the perturbation expansion [B] into 
171 we find a general expression for the n-th order 
perturbation contribution : 

2. The equations of motion 

The nonlinear equations of motion can be found at 
many places in the literature (eg. [3], [4], 151, [6]): 

_ n-l . . 
x n + Q20 Xn = - f(e) Z 

n-1 . . 
L 

j=l 
Xj Xn-1-j - 

j=O 
Xj "n-j (12) 

The on are defined as : 

d2x 
dsL- K(s) x - + K' 

5 + K(s) y + K'(s 

(s) (x2 - $1 = 0 (1) 

After transformation 
variables [7] : 

) xy = 0 (2) 

to Courant and Snyder 

ds ds 
e,=qy-. ex = - 

x x QY@Y 
(3) 

the linear parts of these equations become of the 
linear harmonic oscillator type : 

& 
de2x 

+ Q2X~- + K'(s) S:‘2(~) Q2X[Bx(s)x2-B2y(s)Y21=O(4) 

d.L 
de2y 

+ Q;y + K'(s) Q2yB2y(s) #(s) xY = 0 (5) 

We choose the initial conditions : 

x(0) = A, dx/de,(O) = 0, y(0) = B, dyldey(0) = 0 (6) 

Now we ask for the maximum values of A and B which 
lead to bounded motion if ex and ey tend to 
infinity. 

n 
s-2, = L oi an-i (13) 

i =o 

As we can see the n equations for x, to xn 
contain n free parameters Wi for the nonlinear 
frequency correction. According to [3] and 141, these 
corrections are chosen such as to cancel secular terms 
in any of the n equations for the perturbing contribu- 
tions. Secular terms are defined as trigonometric 
contributions to the right hand side of (12) propor- 
tional to cos Qe and sin Qe. This would 
result in a linearily increasing solution of (11) 
leading to a non -uniformly valid perturbation 
representation of x(e). The solutions xn can be 
found by recursively solving the system (11) and up to 
2nd order are given in [4] : 

xD(i) = A cos Qe (14) 
* 

xl(i) = A2 ql(e) - A2 q,(O) cos Qe 

with 

with 

x,(i) = A" q,(e) - A3 q*(D) cos Qe (17) 



Zcos[(mkn+Q)e 
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n=l 
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(25) 

cos I(pQ&n+m)aj 
- (3Q+n)(Q+n) L Q -(pQ+ntm) 71 (18) 

p = 1,3 

The 
f(B) in $. Pry. 

the Fourier coefficients of 
We assumed f(o)-to be a 

symmetric function with respect to e = 0. The 
frequency correction u2 is given in [4]. The first 
order contribution to the nonlinear detuning vanishes. 
Clearly, we observe the occurence of integer and third 
integer resonance denominators in x1 and also fourth 
integer resonances in x2. 

4. Convergency radius of the perturbation series 
and dynaminal aperture 

The pecturbation results describing the actual 
solution x(e) to a certain approximation do not 
directly tell US something about the limit to unbounded 
motion since to any order we obtain contributions in 
terms of bounded (trigonometric) functions (at least 
off-resonances, i.e. for any irrational tune). On the 
other hand, we may deal not only with perturbation 
results to a specific order, but with the perturbation 
series as a whole. It has been the idea of one of us 
(H. Moshammer, 141) to derive an approximate expression 
for the n-th order perturbation contribution as an 
analytic function of n. Then all coefficients of the 
series (8) are given analytically and any formula for 
the convergency radius of a Taylor series can be used. 
Llsiog Eq. (12) for the n-th order contribution 
xn(8) we may prove that xn may be represented 

We use d'Alembert criterion for convergency of an 
infinite series which tells us that (25) converges if : 

n+l 
cE lim - 

n+m 
I I Ct” 

c 1 (26) 

5. Restriction to second order perturbation theory 

The coefficients in 
expression for x(g) (Eq. ;h)) explic%;y contain 

analytic 

the pertubation contributions qn being defined 
(21): The explicit analytic solutions for q,(a) and 

by 

q2(e ) are given by Eqs. (16) and (18). The idea is 
to keep only q1 
higher 

and q2 in (22) and to neglect all 
order functions qQ where R > 2. This 

approximation still keeps the n-dependence of cnQ 
in (22) so that d'Alemberts criterion (25) can be used 
to determine the approximate convergency-limit of the 
series (24). Since the coefficients cnL contain the 
oscillation amplitude A (Eq. (21)) the so-obtained 
criterion at the same time results in an expression for 
the limiting stable amplitude. Using (22) together with 

we find a result independent of L in the following 

Alim = 
1 

q,(OM.n-j- ; 
x=-92!o) 

s,m2 
(27) 

with 
- 

as : e+l 

P 
l+ !: 

X = 
n - ~~(0) cos(Q8) + x ,p (3 (19) G(x)= ;l k=" 

i+l ( (28) 
3i+l+kl! (Za+Z)! 

with (2a+3)(2r+4)k;0 (i-k)!(4a+5)!(2k)! X-k 

x; (8) = F c; 4n. 6) 
I.=1 

(20) Unfortunaly G(b) cannot be evaluated in closed form. 
However, we may prove 131 that G has a simple 

where the qn are solutions of the 
equations : 

following 
asymptotic behaviour : 

G(A) -f A ; A+- (29) 
n-l n-l 

{A+ Q2qn = -f(g) jto Sj qn-1-j - -A-- 1 ;j Qn-j (21) An+1 
j=O 

For x = 0 we obtain G(0) = 16. From (16, (18), (27) and 
(28) we see that the leading effects of the third and 
fourth integer resonances are contained in this theory. 

The coefficients cna in (20) are given by : 
6. Two-dimensional motion 

,;=A"+1 
n-l 

m _(n+m)! x n=l We now ask for the limiting amplitudes A and B in x- 

mio(-l) (ntl)! 
a+1 

k,!k,!... k,-I! lj;llj(")(22) 
and y-direction according to Eqs. (4). (5) and (6). The 
method used is precisely the same as the one explained 
in Chapt. 3, 4 and 5 and we just write down the final 

where : results for Alim and Blim. All the details of the 
derivations can be found in 131 and [4]. The results 

n-l n-l again up to second order are given by : 

II=~ + jil jkj ; m = 1 kj 
j=l AIim = Min [AA, A2, A3, 41 

With (8), (19) and (20) we then find the formally exact Blim = Min [B,, B2, Bag '$1 (31) 
solution for x(B) : with 

A, = 1%,(0)1-', A2 = 2127q2JO))-l/2, 

x(g) = Aces(@) t Jo he(@)-cos(Qg) sa(O)) T c; (24) A3 = IP,JO))-', A4 = jp2,(Q))-1'2 (32) 
n=l 

A necessary (possibly not sufficient) condition for 
(24) to converge is the convergency of all the sums : 
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B,= lq22bN I-1'2, B2 = 2127pz2(0))-~/2, 

D3=2)27p,,(O)q,2(0)\ -1/z, E,=J4q,,(O)q,2(0)(-1’2 (33) 

where qll, q12, qzlf w.,, plrl ~2~ and ~22 are 
solutions of the following linear second order 
differential equations : 

d2q 2 
li + Qxq,, = + Q; k'(s)B;/*(s)cos2(QxOx) 
de2x 

(34) 

d2q,22 

de2x 
+ Q,q,,= - 2 4, l 2 k'(s)6~/2(s)6y(s)cos2(Qyey) (35) 

d2q2 1 
- + Q&, = 4: k’(s)6:‘2(s)s,,(e,)cos2(QxOx) 
de2x 

(36) 

d2qu 
de', 

+ Q;qxj = -Q~k’(s)8~“i6x(s)q12(Ox)cos(Qx~x)+ 

+ By(s)P,,(ey)cos(Qyey)J (37) 

d2Pll 
dozy 

+Q;pll= -Q$'(s/8;(+02 (s)cos(Q,e,)cos(Qyeyl(38) 

b., 
d02y 

+ Q;Pz, = -Q)Wl6; (s)6~'2(s)[s,,(ex)co5(9yey)+ 

+ ~,‘(Oy)cos(Qxex)i 

d2pm 2 

(39) 

de2y 
+Qy~22= -Q:k'(s)6~is)6::2isls,,ja,)cos(4yey) (40) 

7. Application of the results and discussion 

We applied our theory to the existing mode1 of the 
LEP machine containing all setupoles and all the 
experimental insertions. In Fig. 1 we vary the 
horizontal tune Qx for a superperiod (one quarter of 
the whole machine) from 17.25 to 17.75 and calculate 
the maximum *initial amplitude Alim on the y-axis 
[x(O) = A, x(0) = 0, y(O) = 0, y(0) = 0] at 
the high-8 interaction point. The stars correspond to 
the analytic method while the crosses are the tracking 
results far 400 turns. Except in the interval 

Qx = 17.35 to Qx = 17.45 the analytic results agree 
reasonably well with the tracking (kick-code). Clearly 
we see the effect of the third integer resonance 
(Qx = 17.333...) and half integer as well as fourth 
integer resonances at Qx = 17.5, Qx = 17.25 and 
Qx = 17.75 respectively. The dip at Qx = 17.6 due 
to a fifth order resonance (3:5) indicated by the 
tracking program is not covered by second order 
perturbation theory as can be seen from Eqs. (16) and 

I 
18). 
x(O) 

In Fig.. 2 we start the motion *on the y-axis 
= 0, x(0) = 0, y(0) = 8, y(0) = o] 

and look for Blim as function of the strength of the 
sextupole family SFl. Again the agreement with tracking 
is relatively good although a certain "overshooting" 
of the analytic results with respect to tracking is 
observed. Probably an extension of the perturbation 
theory to third order would further improve the 
results. 

I 
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Fig. 1 - Maximum stable initial amplitude on the x-axis 
for LEP taken at the low-6 interaction point as a 
function of the horizontal tune Qx for a superperiod. 
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Fig. 2 - Maximum stable initial amplitude on the y-axis 
for LEP taken at the low-5 interaction point as a 
function of the strength of the sextupole family SFl. 
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