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Introduction - 

We assume that the reader has some under- 
standing of Lie algebraic methods as applied to 
classical dynamics (for an introduction, see (1) and 
references therein). One of the capabilities of a 
Lie algebraic code, like MARYLIE, is to generate a 
“map”, the nonlinear analog of a transport matrix, 
and the ability to compose such maps. If we write 
the map that transports a particle around a circular 
machine as M, then it can be shown that (up to 
divergences), there is a map A such that 

M = A-’ N A (1) 

Here N is the normal form of the map. Assuming that 
the map 14 is static (no bunchers or accelerating 
cavities), then N can be written as 

N = exp(-:H:) (2) 

Here H (the pseudo Hamiltonian) is a polynomial, 
which has only a few nonzero terms. Up to third 
order, in the static case H can be written as (if 
the tunes have no second, third or fourth order 
resonance) : 
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2 
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2 
x + P2 

Here hx -2, h 
Y2 + P2 

2 Y 
~2. 

2 

(3) 

Note that eq. 3 has only 12 independent para- 
meters, while a generic fourth order polynomial in 
six variables has 209 coefficients. The co- 
efficients of H have an immediate physical meaning: 
w 
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2% are the tunes, 2 5 
2n 

, 2n are the first order 

chromaticities, _f?. 2n is the horizontal anharmonfcity, 

the unit change of the tune for an unit charge in 
emittance. We see that N describes the ideal, un- 
coupled betatron motion. A describes the distortion 
of the ideal motion. Note that N is the same at any 
point of the ring, while A is dependent on the point 
of section. Eq. (1) can be interpreted in the 
following way: A-’ changes from the actual phase 
space variables to the normal variables, then IV 
applies the normal Hamiltonian to the normal 
variables, finally A changes back to the actual 
phase space. This is equivalent to applying the 
one-turn map to the actual coordinates. The motion 
in the normal variables is very simple. If one goes 
to action angle coordinates defined by 

5, =x+ipx=J2hxe 
-W x 

SY 
= y + ip, = ‘/z-y e 

-wx 
. (4) 

One can see that the action of H does not change hx 

and hy, while 6x, $y change by a phase shift depen- 

dent only on hx, hy. 

Thus the motion in the normal form coordinates 
lies on the direct product of a circle in the x-p, 
plane and a circle in the y-py plane. 

Data Analysis in the Nonresonant Case __----- --. _____ -~ -.._.-.. 

The producedure for analyzing the tracking data 
is as follows. 

(1) A map is produced for the whole ring using 
a program that can do it (not necessarily MARYLIE). 

(2) MARYLIE is used to analyze the map, giving 
the map A-‘. The current version of MARYLIE can do 
this to third order. An advanced version of MARYLIE 
produce A-’ up to fifth order (see also reference 
2). 

(3) One then applies A-1 to the tracking 
data, which i.tself can be produced using any 
program. 

If the resulting “cleaned up” data lies on per- 
fect circles one can deduce that any “smear” present 
in the initial tracking data is not the product of 
the motion being chaotic, but can in fact be closely 
approximated by an integrable system. 

Any residual smear is a candidate for real 
chaos. The normal form procedure thus acts as a 
microscope to reveal a small region of chaos in the 
tracking data. Of course residual smear can also be 
caused by the truncations used when producing M and 
computing the factorization of eq. 1. 

As an example, figure 1 shows tracking data for 
the Tevatron with strong distortion sextupoles 
turned on. Both horizontal and vertical oscilla- 
tions are excited. The large areas of “random” 
motion could be interpreted as chaos. By contrast 
the data in figure 2 has been transformed by A-‘. 
The data lies very close to circles, showing that 
the original data lies close to distorted four 
dimensional tori, ,and most of the apparent smear is 
due to the projection into two dimensions of the 

distorted tori. Since hx, hy are invariant for the 

normal motion, by applying A-’ to them one can 
derive approximate invariants under the actual 
motion. Such invariant are the nonlinear analogs of 
the linear Courant-Snyder invariants. Figure 3 com- 
pares these invariants, computed to fourth and sixth 
order with the Courant-Snyder invariants. 

Resonant Case _-----.----- 

If the tunes are resonant a normal form like 
the one in eq. 3 is not possible. Assume we have 

wx =W y, then we can still write 

M = A-’ NResA , 

with 



676 

N Res = exp(_-:HRes :) 

HRes has (up to fourth order) the following 

additional terms besides the ones in eq. 3: 

HRes = H + a Re 5, FY P, + S Im 5, sy p, 

+ y Re 5, r p2 + 6 Im 5, r 
Y T 

P* Y T 

+ A Re cfi r2 
2 -2 

Y 
+ B Im Sx 5 

Y 

+ C Re 5, sy h, + D Im 5 x ry hy 

+ E Re cy SY hy + F Im 5, ry h,. 

The terms in eq. 4 commute with the quadratic part 
of the Hamiltonian 

h h 
2 

w($++) +dG. 

As a function of action-angle variables the resonant 
terms can be written as 

2 hl” hl’* (a cos(e 
x Y Y - $,) + 8 sin(Oy - 0,)) Pr 

+ 2 hli2 h;l2 (v 
x cosuJy 

+ 4 hxhy (A cos (2$y - 2ox) + B sin (20y - *Ox)) 

i 2 h312 h;l2 (C 
x cos(9y - 4,) + D sin($, - $,)) 

+ 2 h1’2 h;12 (E cos (gy 
x 

- $,) + D sin($, - $,)). 

(6) 

Since the extra terms in the effective Hamiltonian 
only dependent on $y - +x, they commute with 

h, + h 
Y 

. This has been shown here to fourth order, 

but it can easily be seen to be true to arbitrary 
order. This suggests to go to a new canonical set 
of coordinates. Instead of I$,, h,, $,, hy one can 
use 

7) 

4-l = & hl = h, + hy 

$2 = +y - 0, h2 = hy. 

The variables bi, hi are canonically conjugate: 

[+i, hJI = bij* (8) 

In these new coordinates HRes commutes with hl and 

Fs only a function of 42, hl and h2. Since hl is 

constant, in the I+~, h2 plane, the trajectories lie 

on the contour lines of HRes, for a given value of 

hl’ 

One can introduce Cartesian coordinates using 
the identities 

(41 + 1~1) = /F e 
-101 

- -w2 
(q2 + ip2) = J2h2 e . (9) 

In these new variables the motion is on a torus 
given by the direct product of a circle Fn the ql 

)Pl 

plane and a closed curve in the q2,p2 plane. Note 

that the speed of motion around the circle in the 

ql-pl plane is not constant, since the rate of 
change of 1$1 is a function of h2 and $2. 

‘he change from x, P,, Y, py to ql, ~1, 42, ~2 

can be written directly in the Cartesian form: 

2 
41 z---- Jx =- 
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- YP, 

2 2' 
Jx +p x 

(10) 

The Cartesian form shows that the coordinates q2,p2 

are singular at the point corresponding to x = p, = 
0, which is a fixed point for HRes. 

In the q2,p2 plane this fixed point is mapped 

into a circle of radius J2hl . Only the region in- 

side the circle is accessible to physical motion. 
This suggests to “regularize” the coordinates by 
mapping the inside of the circle into the surface of 
a sphere with the center mapped into the south pole 
and the circumference into the north pole. The 
radii are mapped to meridians. The area is pre- 
served by considering the q2-p2 plane picture as a 

Lambert-equiarea projection. The radius of the 
ii- 

sphere is R = ~‘4 . The procedure for the resonant 

case add to the steps of the nonresonant case the 
final transformation given in eq. 10. As a simple 
example fig. 4 shows the results of tracking a 
superperiod of the LHC lattice (the SUPPER lattice 
of ref. 3). 

Figure 5 shows the same data after the applica- 
tion of the resonant A- l, followed by the transfor- 
mation of eq. 10. Figure 6 shows the same data 
plotted on a sphere. 
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Fig. 1. Tracking data for the TEVATRON with distor 
tion sextupoles. Both horizontal and vertical 
motion is excited. 
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Fig. 2. The data of fig. 1 transformed by the non- 
resonant A-‘. Units are (m x radians)“2. 
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Fig. 3. Nonlinear invariants for the outer 
trajectory of fig. 1. 
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Fig. 4. Tracking data for the LHC. Six orbits are 
shown. The tunes are very close vx = vy = 16.57. 
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Fig. 5. The orbits of fig. 4. transformed by the 
resonant A-1. The variables q2 and p2 of eq. 10 are 

shown. Units are (m x radians)1/2 x IO-. 

Fig. 6. The same data as in fig. 5 plotted on a 
sphere. 


