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Abstract 

An analytical evaluation is given of several 
expressions of averaged lattice functions in bending 
magnets in a synchrotron ring. In particular it turns 
out that a simple expression results for the fourth 
synchrotron radiation integral in an isomagnetic 
lattice with rectangular dipole magnets, which is 
independent of the chosen quadrupole structure and of 
the machine length. As a result damning rates of the 
synchrotron and betatron oscillations, and energy 
spread of the beam are independent of the chose type 
of lattice. 

Introduction 

The synchrotron radiation integrals 11 to I5 (I) 
are used for evaluating the physical properties of the 
beam in a synchrotron or storage ring. The integrals 
are non-zero in bending magnets, and are given in 
terms of combinations of lattice functions (Twiss- 
functions, dispersion function, etcetera), only at the 
segment boundaries: Helm et.al. (1). 
In this paper an evaluation is given of the fourth 
synchrotron radiation integral I4 in particular, 
following the the prescriptions of Helm et.aI.. for 
rings with rectangular homogenous dipole magnets. A 
very simple expression results, independent of the 
lattice functions. This example has considerable 
practical applications, since rectangular (“straight”) 
dipole magnets are easy to construct, and are often 
used. Moreover it turns out the analytic expression is 
independent of the sign of curvature (direction of 
rotation), Hence approximate expressions of AI4 for 
wigglers and undulators can be found by application of 
the given formula. The radial and longitudinal damping 
partition numbers (2) are given by J, = 1-D. J, = 2+D. 
with D = 14/I?. It is well-known that for separated 
function isomagnetic lattices D<<l and that D vanishes 
for homogenous bending magnets with parallel end faces 
(3). Our evaluation of 14 in fact shows that for this 
case of parallel end faces -14<<1 but # 0 for dipoles 
with small bending angle. In synchrotron lattice 
codes, eg. DIMAD (4). the numerical evaluation of 
damping partition numbers is done via Helm’s formulas, 
and also always shows that I4< 0 for straight homo- 
genous bending magnets. In this paper we will give a 
derivation for the expression for 14. The result. was 
first found with the code REDUCE (5), which was used 
for checking the relations given by Helm, e.g. for 
finding the expression for the averaged H-function. 

Definition of synchrotron integrals (1) 

With the usual Twiss functions a. j3, 7. and with 
the dispersion function p the synchrotron radiation 
integrals are in fact summations of relevant quanti- 
ties in bending magnets: 
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whose length is &l and where H = $ [n2+(Dn’- $ P’TJ)~], 

with D’ = d/3/ds, n’ = dn/ds. 

Evaluation of I 

Here we give the derivation of the formula for 
AIA, the contribution to I4 of each magnet, for 
rectangular homogenous bending magnets. The bending 
angle is 2 9. the angle of entrance and exit is +. see 
fig. 1. In this derivation we closely follow the 
prescriptions of Helm ct.al. The general expression 
for AI4 is: 

AI4 = s < II > - 2P < y > 
P P 

where e and p are the length and bending radius of the 
magnet . 
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in a homogenous sector magnet the dispersion function 
is given by: 

-T](S) = 7)ocos(s/p) + ,rd sin(s/p) + p[l-cos(s/p)], 

where ~~,and ~16 = (dn/ds), are the values of the 
dispersion function and its derivative at the entrance 
of the dipole. Hence the averaged value, and the value 
at the end of the dipole are: 

< q > = < q(TloJQ > = & cqos + q; P(1-q + P(&--91. 
and n(L) = n,C + 7’; ps + p(1-C) 9 

where S = sin2~, C = cos& (double ip). For a rectangu- 
lar dipole magnet a magnetic wedge of angle + is added 
to the sector magnet at either end. This changes n; to 
77; (but not the value T)~): 

3 
’ = 7);) + (qo/p)‘f, 

where T = tan ‘p (single 9). Moreover the addition of 
wedge magnets gives contributions to < nn/p3 > (1). 
which are absent in the case of the a sector magnet: 

qT 
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where n2 = n(8). 
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The expression for AI4 now becomes: 

AIq = k CV,S + ViP(lC) + P(&P-S) - (qo+n2)T]. 
P 

with +12 = 77,C + pi PS + p(1-C). 

This expression is independent of the values no and 

TIi: ‘coefficient of prli: 1 - C - TS = 0, 

coefficient of 0, : S - T(l+C) = 0. 

Remaining terms: A 4 = $ [2~-S-T( 

= $ (2~-2T), since S + TC = T. 

r 
I AI4 = ; (++tanq) 

I 

, 

with 9 half the bending angle of the magnet. 
The formula given above shows that damping rates and 
r.m.s. energy spread of the beam are independent of 
the focussing structure of the machine, for the energy 
spread even independent of machine length. 

Comment: Although it was seen that the coefficient of 
ni equals zero. without using the expression relating 
ni and n,6, which could lead to think that one could 
use any entrance angle. it is quite clear that the 
independence of AId of n& and ni only occurs for the 
very special case of equal entrance and exit angles, 
i.e. for a straight magnet. This statement was also 
verified with the help of REDUCE. 

The relations for damping rates of betatron and 
synchrotron oscillations, and for the relative r.m.s. 
energy spread are: 

-1 U 

Ti =Ji2ET 0 = JiI, C7 Ez/(2To) 
0 

T2 e = Cqv2 2 J,’ 

with U, the energy loss per turn, -ro the relativistic 
factor, To the revolution time, the numerical factors 
for electrons: C = 8.85 10es m GeV3, 

CT = 3 84 10-13m, 
q . 

and with damping partition numbers Jx = 1-D. J 
JE = 2 + D2, D = 14/12. For an isomagnetic lat 1. 

= 1. 
ice 

with 12 = 27rp-1 and Ij = 27rp-2 and having N straight 
dipole magnets the quantity D is given by: 

D=l+an; 

In particular it applies to each pole piece of a 
dipole undulator, and the total contribution to 
I4 of an undulator of N pole pieces is given as 

AI 4, und. = (N/p){? - tanq/2) 

where ‘p is the bending angle of each pole, and p the 
bending radius. Moreover the formula applies to a 
dipole wiggler constructed out of straight dipoles, 
satisfying the condition of equal exit and entrance 
angles. 
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Changing the polarity of a particular dipole implies 
the transformation p +-p and Q + - 9. Inspection of 
the derivation of the formula for AI4 shows that the 
coefficients of T) and T)’ are zero anyrray and that the 
remaining terms are invariant under this transforma- 
tion. Hence the formula applies also to reversed 
bending magnets. 


