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Introduction 

The physlcal presence of vacuum structures can be 
expressed in terms of a coupling impedance experienced by the 
beam. The beam envlromnent considered here consists of parasitic 
higher order modes of the r.f. catities. These resonances may have 
high enough Q’s to allow consecuiive bunches to Interact through 
mutually induced fields. The cumulative effect of such fields as the 
p;~rllcl~s pass through the cavity may be to induce a coherent 
hrxlidllp ln synchrotron motion of the bunches. 1. e. a longitudinal 
coIlpled-hunch Snstabllatyl. 

The colliding mode operatlon of the present generation of 
h@ energy synchrotrons and the accompanying r.f. manipulations. 
make considerations of lndlvidual bunch area of paramount 
importance. Thus. a longitudinal instabflity in one of a chain of 
accelerators. while not leading to any Immediate reduction In the 
intensity of the beam in that accelerator. may cause such a 
reduction of beam quality that later operations are inhibited 
(resulting in a degradatlon in pezformance). 

In this paper we employ a longitudinal phase-space tracking 
code [ESMl$ as an effective tool to simulate specific coupled bunch 
modes arising in a ctrcular accelerator. One of the obviotrs 
advantages of the slmulatton compared to existing analytic 
formalisms, e.g. based on the Vlasov equatio$. la that it allows 
consideration of the instabflity in a self-consistent manner with 
respect to the changing accelerating conditions. Furthermore this 
scheme allows to model nonlinearitles of the longitudinal beam 
dyl~%nrIcs, which are usually not tractable analytically. 

Included in the simulation is the investtgatton of possible 
cures ahned at eliminating or limiting growth of these instabllittes. 
Most of the discusslon is confined to three basic damplng schemes: 

I]Synchrotron tune spread tnduced inside an Individual bunch clup 
to a highly anbarmonlc (quartlc) r.f. potential generated at the 
center of each bunch by a so-called Landau cavitifl. 

2)Bunch-to-bunch synchrotron tune spread achieved through 
modulation of the fundamental r.f. voltage by a secondary voltage 
source of lower harmonic number so that consecutive bunches ill1 
up slightly different buckets and obvfously, their synchrotron 
tunes are no longer the same, 

31Dampitq through a radial positlon fecdbark loap whrre a 
longitudinal broadband kicker delivered an amplilude-llmlted 
correctton voltage to each bunch on a turn-by-turn basis. thereby 
actively damping the coupled bunch modes. 

The machlne-dependent parameters, which are considered 
here. are derived from the Fermilab Booster: thts study betng 
motivated by an instability problem in that machine. 

Lontzitudinal Phase-Snace Tracldne with Wake Flel& 

Brteffy summarized, the tracking procedure used In ESME 
consists of turn-by-turn lteratfon of a pair of Hamilton-like 
difference equations descrfbing synchrotron oscillation In 8-e phase- 
space (0 s 8 I 2x for the whole ring and E = E - E,. where E, Is the 
syrxhronous particle energy). Knowlng the particle distribution in 
the a.zimuthnl direction, p(R), and the revolution frequency. cq~, after 
each turn. one can construct a wake field induced voltage as 
follows~ 

V,(D) = eo, Cpn z(no,letie. (1) 
*=-00 

where pn represents the discrete Fourier spectrum of the beam and 
Z(w) is a longitudinal coupflng impedance. The numerical procedure 
involved In evaluatlng the above expresston, Eq. (11, necessartly 
employs a discrettiation of the &directlon. Some caution 1s rcqulrrd 
in this process of binning, due to the finite stat&tics inherent in 
such a simtrlallon. 

For the purpose of our slmulatlon, only the relatively high-Q 
portion of the longitudinal impedance Is relevant. A single parasitic 
mode can be modelled by the harmontc resonator of the tmpedance 
given by 

Z(O)] = 
R 

1 + IQ{ o/we - q/o 1 121 

Ilere R is the shunt impedance. Q den&es f hr qi~a’tity laclor of the 
resonator and CQ fs ft.s resonant frequency. For M equally spaced 
coupled bunches there are M possible dipole modes labeled by m = 
1,2,.... M. To fllustrate the m-th dipole mode one can look at the 8- 
position of the centrold af each bunch, Bit I= 1, 2,.... M. The 
signature of the slmplest coupled bunch mode has the form of a 
discrete propagating plane wave: 

I3( (f) = e&n 
I 

2ml 
r- w,t 

I 
* 

where og Is the synchrotron frequency. Based on the analytic model 

of coupled bunch modes proposed by Sachere!-’ one ran formulate a 
simple resonance condition for the m-th dipole mode drtven by the 
longitudinal impedance Z&l sharply peaked at c+ This condition is 
given by: 

we = [nM + ml (yo * us I 141 

where II is an integer. Since w, Is time dependent faccelerationf and 
oc is flxed (geometry). and knowing that the width of the impedance 
peak is governed by oc/Q one can clearly see that the resonance 
condition. Eq. (44). is mafntained over a fIntte tlmc interval. This 
leads to the useful concept of a mode crossing the Impedance 
resonance. Using the explicit time dependence of K+, &inematicsl 
and Eq. (4) one can easily calculate crossing intervals for various 
modes. This serves as a guide tn the simulation since it allows us to 
select an appropriate time domain where the mode of interest 
crosses the resonance and will more likely become unstable. 

Iri thr early stagrs of thts study we tentatfvely Identlflrd the: 

parasitic resonance at f, = 85.5 MHz with Q = 3378 and R = 914r1w3 
as the offending part of the impedance giving rlse to a coupled 
bunch Instability with barmonlc number m = 53. This mode crosses 
the resonance earlier in the booster cycle, therefore the appropriate 
time interval to study the m = 53 mode 1s chosen as 19 - 26~10-~ sec. 
The r.f. system of the Fermilab Booster provides 84 accelerating 
buckets. As a starting point for our simulation each bucket in O-E 
phase-space is populated with 100 macro-particles according to a bi- 
Causstan distribution matched to the bucket so that 95% of the 
beam 1s confIned within the contour of the longitudinal emittance of 
0.02 eV-sec. Each macro-particle ts assigned an effecttve charge to 
simulate a beam intensity of 1.5~10~~ protons. 

In a real-life accelerator any coherent fnstabllity starts out of 
nofse and gradually builds up to large amplitudes. In our model 
situation it proved necessary to create some intrinsic small 
amplitude - “seed” of a given mode In order to “start-up” the 
instability. The “seeding” procedure is basically prescribed by Eq. 
(31. Initially identical bunches are rigldly dispfaced from the center 
of each bucket (both in e and 9) so that the position of their 
centrolds, fJ1. satisfy Eq. (31 for all the bunches around the ring. In 
practice, a subroutine of ESME, which generates a closed contour 
in 0-e space under the action of a sinusoidally vary@! voltage, was 
used to establfsh the positlon of the bunch centroids. The intrinsic 
seed amplitude. 8,. was assigned a value of 10e3 rad corresponding 
to an amplitude in energy of approximately 2 MeV. 

To visualize the position and shape of individual bunches as 
rhey evolve in time one can compose a “mountain range” diagram by 
plotting O-projections of the bunch density ln equal increments of 
revolution number and then stacking the proJections to lmltate the 
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the synchronous phase. e = h0 - $s. Parameter k LS the ratlo of the 
secondary and primary voltage amplitudes. The combined net 
voltage is constrained by the condition that its first and second 
de&&Ives van&h al lhe center of each bunch. This ftVes matching 
parameters k and e4 as follows 

<and 181 

The resulting r.f. voltage is ilhzstrated in Fig. 2. Ihe purpose of 
impostng the above constraint, Eq. (81, is to provide a highly 
nonlinear bucket resultlng In large synchrotron tune spread with& 
each bunch. This fn turn may eventually provide stablity against 
coherent motion of coupled bunches (via a Landau damping 
mechanisml. A family of closed orbits in 0-c space corresponding to 
different amplitudes. was generated using a contour drawing 
subroutine of ESME. The result is deplcted In Fig. 3. Each orbit is 
labeled wlth the respective synchrotron tune in frequency units 
(XC-‘1. The boundtng curve. wtth tune 0, represents the separate 
tnate the 
system). 

“squareness” of the bucket tn this douhlie r.f. voltage 

The tracking was carried out for exact% the same l.niLral 
conditkm as described in the pmvious section. In addition to tie 
fundamental r.f. voltage the Landau cavity voltage, V&l, ts turned 

on linrnrly over the first 2~10~~ sec. matched to the fundamental 
voltage program according to Eq. (81 for a period af 3~10-~ set and 
flnrtlty ttuned uff linearly over the last 3~10~~ sec. The tracking 
results are illustrated by the mountain range plot collected tn Fig. 
lb. One can see by comparison with the corresponding plot for the 
undamped mode, Fig. la, that the Landau cavity provides 
substantial damping of an tnitially unstable coupled bunch mode, 

time flow. The resulting mountain range plot for an undamped 
mode 53 is given Ln Fig. la. 

In the next few secuons we will proceed with the discussion 
of suggested damping mechanksms. 

a) b) dl 

Fig. 1 GoUectlon of mountatn range plots Ulustratlng the behavior 
of coupled bunch mode m = 53 with: 

a) no damping. 
b) passive damping via Landau cavity. 
cl passive damping through lhe h2 = 77 harmonk, 
d) active damptng via radial posltfon feedback. 

Fourth Harmonic Landau Cavity 

Row let us consider a situation where. in addition to the 
frrndamental r.f. voltage source, we have a secondary source of 
voltage whose frequency IS equal to that of the iourtb harmonic of 
the fundamental; the so-called Landau cavity. The phase and 
amp!itudr of” the secondary voltage source are prescribed by the 
conditions that both the first and second derlvstives of’ the net 
vollage vanish at the center of each bunch. The above condition can 
hr fm-m~lntetl by introducing both voltages explicitly as follows 

VI w = v,, sink+, + $4 
and (71 

V.&J = W,f sin@4 f 4#). 

Hrre $, is the synchronous phase relatfvc to the lmrdamental r.f. 
waveform, o4 is the synchronous phase relative to the fourth 
harmonic wavrfomr and f denotes the devration of a particle from 
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Fig. 2 Combined voltage of a double r.f. system wfth Landau cavity. 

One can apply a secondary voltage source wit.h lower than 
Ilrc fundamental harmonlc number. We will constder a situation 
where 2 out of 18 r.f. cavities. modelled as a secondary source. 
provide voltage at harmonic number h2 = 77 [the remaining 16 
cavities. modelled as the fundamental r.L source, will run at hi - 
84). Kow any seven (hl - h2 = 7) consecutive buckets dtffer due to 
the voltage modulation provided by the secondary source. Therefore, 
the value of synchrotron frequency will vary from bunch to bunch 
(even for small amplitude oscillations in the linear region). For 
exactly the same inltlal conditions as In the simulation of the 
previous section the h2 = 77 voltage source replaces the Landau 
cavity with the same linear turn on/off feature. As before, the 
phase-space evolution of a single bunch. given by the mountain 
range plot, Fig. Ic, lllustntes effective damping of m = 53 coupled 
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Fig. 3 Synchrotran tune spread inside a bucket corrected hy 
Landau cavity as a function of relative amp1ltude.k - &l/E,. 
where E, is the height of the bucket. 

bunch modes. In fact, in this case the damping is somewhat more 
evident, 

Active DamotnP Throueh Radial Position Feedback 

It was noted that the coupled bunch osclllatlons in the 
Fermllob Booster gave rise to a radial position signal in a ctrcult 
originally designed to damp horizontal bet&on osclllatious. It was 
suggested that this circuit be used to drive a longitudinal 
broadband kicker, lhereby actively damping the coupled bunch 
modes. This scheme was also simulated. The “kicker” In our 
srmulatlon delivered a maximum IkV correction voltage to each 
bunch: lhe “seed” amplitude for the mode corresponded to a signal 
level safely above the noise level of the monitor in the damping 
circuit, as inferred from obsewatlons of the signal and knowlcdgr of 
the dispersion in the region of the monitor.I-lere agaln the 
simutatton results form = 53 coupled bunch mode Is illustrated by 
the mountain range profile given in Fig. Id. Comparison with the 
other schemes indicates that such an active damper is very effect We 
in both cases studled here. 

conerence length for a given drlvtng frequency. 
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At this point, some qualitattve comments concerning the 
passive damping mechanisms and their relative efficacy are in 
order. We note that for mode 53, the cavities operating at harmonic 
77 appear to be much more efficient than the Landau cavity (See 
Figs. lb and lc). This is nrrt totally surprisiug. since the growth of 
the Instability Is dependent upon bunch-to-bunch “communication” 
via wab fields. Tbe h2 = 77 cavltles dtsrupt this communication 
directly. via bunch-to-bunch tune spread . In addition. the distance 
between the bunches is modulated by the secondary r.f. voltage and 
therefore the components of the current at harmonics of the 
fundamental r.f. frequency are reduced. The Landau cavtty. on the 
other hand, operates at an harmontc of the fundamental r.f. 
frequency, and therefore induces tune spread only within each 
bunch. The Landau cavity attempts to “discourage” the growth of 
the instability vta suppression of the coherent motion inside each 
single bunch. The tune spread Induced within a bunch, however. Is 
a function of the range of amplitudes of the particles undergoing 
synchrotron motton. Thus, if a group of particles oscillate at 
amplitude “close” enough to each other. we might expect them to 
respond to a suitable driving force ln a coherent fashlon. 
Presumably, particles may be regarded as “close” if the tune spread 
among them IS smaller than the frequency characterizing the 
growth of the instabfltty. This ‘%lustuing” phenomenon dtd. in fact. 
occur in the simulation for mode 53. as illustrated by the mountain 
range plot in Fig. lb. It is evident that a cluster of “almost coherent” 
particles (in the prevtously described sense) still participates in 
coupled bunch oscillation. while the rematutng particles with 
syuchrotron tune spread larger than some crltical value do not 
respond coherently to the coupltug wake field. Thts would suggest 
that there exists a threshold tune spread defining the extent of a 
“coherent blob” inside the bucket: that extent betng a charactertstIc 


