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Introduction 

A high level of current dependent bunch lengthening has 
been observed in the north damping ring of the Stanford Linear 
Collider (SLC), ’ indicating that the ring’s impedance is very 
inductive. This level of bunch lengthening will limit the per- 
formance of the SLC. In order to study the problem of bunch 
lengthening in the damping rings and the possibility of reduc- 
ing their inductance we compute, in this report, the longitu- 
dinal impedance of the damping ring vacuum chamber. More 
specifically we find the response function of the ring to a short 
gaussian bunch. This function will later be used as a driving 
term in the longitudinal equations of motion.’ We also iden- 
tify the important inductive elements of the vacuum chamber 
and estimate their contribution to the total ring inductance. 
This information will be useful in assessing the effect of vac- 
uum chamber modifications. A more detailed discussion of the 
calculations will be given in Ref. 3. 

Inductive Vacuum Chamber Elements 

The SLC damping ring vacuum chamber contains many 
small discontinuities - such as shallow steps, transitions, 
masks, and bellows - which are normally inductive. When 
a bunch passes by an inductive object the slope of the induced 
voltage - over the bunch core - is of the opposite sign of the 
slope of the rf wave. Such objects will tend to lengthen the 
bunch. The ring also contains a few deeper objects - primar- 
ily the rf cavities - which are normally capacitive. The slope 
of the induced voltage of a capacitive device is of the same 
sign as the slope of the rf wave, and such objects will tend 
to shorten the bunch. It is important to note that whether 
an object is inductive or capacitive depends critically on the 
length of the driving charge. Vacuum chamber objects appear 
more inductive to longer bunches, more capacitive to shorter 
bunches. 

Most of the inductive elements in the damping ring are 
almost lossless over the operating bunch lengths and can be 
represented aa pure inductors; i.e., the induced voltage J&d 
- the wakefield times the charge in the bunch - can be well 
approximated by the formula 

v --Ldr ind - dt ’ -- 
with I the bunch current, t a constant called the inductance, 
and t the time. The validity of Eq. (1) implies that the bunch 
sees primarily the low frequency part of the object’s impedance, 
where it is purely imaginary, and linear with a slope of -L. 
Note that if an object is a good inductor at a certain bunch 
length, it will continue to be so at longer bunch lengths. 

It is normally easy to see whether or not an object is a 
good inductor for a gaussian bunch with length o. For ex- 
ample, suppose we have an obstruction in a tube of radius a. 
If the bunch length obeys the relation u 2 a/2 then little of 
its power spectrum (5 9s) o is above the tube cutoff frequency. 
When the beam passes by the obstruction it will therefore leave 
little energy behind, since the tube will not support free waves 
below its cutoff. The head of the beam will lose energy to the 
discontinuity, but the tail will reabsorb most of it, resulting in 
an inductive wakefield. In the SLC damping rings there are. 
many small discontinuities on tubes of radius 11 mm (or less) 
which, according to our criterion, are good inductors for bunch 
lengths down to 5.5 mm. 
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In this paper, in order to quantify the inductiveness of a 
vacuum chamber discontinuity, we first compute the wakefield 
of a gatissian bunch passing by the object using T. Weiland’s 
computer program TBCI.’ We then perform a least squares fit 
t,o Eq. (1) - weighted by the current distribution - to obtain 
the effective inductance L. If the object is a good inductor the 
results will change little when the bunch length is increased. 
For the calculations we only consider objects connected to equal 
sides tubes, so that the system’s potential energy is the same 
at the beginning as at the end of the calculation. 

Some Simple Inductors 

When a bunch with u/a 2 112 passes by the small cavity 
of Fig. la it induces a voltage across the gap that - according 
to Faraday’s Law - depends on the time rate of change of the 
magnetic flux pm in the cavity. If we approximate pm by the 
product of the beam’s unperturbed magnetic field at the cavity 
times the cavity cross-sectional area, we obtain the inductance 
of this object’ 

A/u small, (2) 

with I the beam current and 20 = 377 R. The inductance of 
a bellows - which is a sequence of small cavities - can be 
approximated by the above result multiplied by the number of 
convolutions. 
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Fig. 1. Some simple vacuum chamber elements: (a) a 
small cavity, (b) a symmetric pair of shallow transi- 
tions, (c) a shallow iris. 

We have done parametric studies of a shallow iris (see 
Fig. lc) using TBCI, as described earlier, making sure that 
the bunch is long enough for us to have reached the asymp- 
totic value of L. For small g, we find that the numerical results 
agree well with 

L = zq A/b small , g/b small . 

From similar studies performed on a pair of symmetric, 
shallow transitions (Fig. lb) we find that the inductance - 
if the transitions are separated by a distance at least on the 
order of b - can be approximated by 

A/b small, g/b 2 1, 9 5 T/‘J . (4) 

We see that by changing the angle of a transition its induc- 
tance can be reduced, although only very slowly. However, if 
we break up a transition into n smaller steps, which are suffi- 
ciently separated, we can gain by the factor n. Equation (4) 
approximates the numerical results well even for A/b - .5. 
Note that the inductance of the iris of Fig. lc must also be 
given by Eq. (4) with 0 = T/Z when g/b 2 1. From the sim- 
ulations we also find that the losses of these simple inductors 
decrease exponentially fast as the bunch length is increased. 
This is understandable since only for the tails of the beam’s 
spectrum - above cutoff - is the real part of the impedance 
nonzero. More details of our parametric studies will be given 
in Ref. 3. 
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Finally we point out that the inductance formulas of this 
section may be used to estimate the.imaginary part of the 
transverse impedance 9m(Zl) at the origin for these struc- 
tures. Using a well-known formula’ for estimating the trans- 
verse from the longitudinal impedance for a cylindrically sym- 
metric structure, with tube radius a, we find near the origin 

8m(ZJ 63 $L . 

Layout of the Damping Ring Vacuum Chamber 

The damping ring vacuum chamber is divided into 8 girders 
(see Fig. 2). Girders 2, 3, 6 and 7 are almost identical. Each of 
these girders contains 4 l/2 FODO cells, with the quadrupole 
vacuum chambers - which are cylindrically symmetric - sep- 
arated by the roughly rectangular bend vacuum chambers (see 
Fig. 3). Girders 5 and 8, in addition to half a FODO cell on 
each end, contain kickers, septa, rf cavities and other vacuum 
chamber elements not found in the rest of the ring. 

Fig. 2. The girders of the SLC north damping ring. 
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Fig. 3. The cross section of the bend chamber. The 
dashed circle shows the size of a quad chamber. 

The vacuum chamber of the FODO cells can be divided 
into two groups of objects, each of which is repeated 20 times 
in the ring. One group, which we will call a “QD vacuum 
chamber segment” is centered on a defocusing quadrupole vac- 
uum chamber, with each end at the middle of the neighboring 
bend chamber. The ‘QF vacuum chamber segment” is simi- 
lar, though centered on a focusing quadrupole. The vertical 
profile of these segments is sketched in Fig. 4, with the en,ds 
truncated. Nonsymmetric portions are shown dashed. The fig- 
ures are drawn to scale. The total length of each type is about 
60 cm; the half-length of the bend chamber is 15 cm. 

A QD segment (see the top sketch) begins with the roughly 
rectangular bend chamber (l), which is connected by a ta- 
pered transition (2) to the cylindrically symmetric defocusing 
quadrupole (QD) chamber. The QD chamber contains a 1 inch 
beam position monitor (1” BPM) (3), a QD bellows (4), a serf 
gasket (5), and a QD mask (6). F inally there is another transi- 
tion (7) into the next bend (8). The ends of a QF segment are 
similar (see the bottom of Fig. 4). The cylindrically symmetrrc 
QF chamber, however, contains a 1” BPM (3), a flex joint (4), 
and a QF mask (5). 
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Fig. 4. The vertical profile of a QF segment (top) and a 
QD segment (bottom). The noncylindrically symmet- 
ric portions are drawn with dashes. 

Ring girders 5 and 8 include two kickers, two septa, a two 
cell rf cavity, two 1” to 2” transitions, four 2” BPM’s, four 1.4” 
BPM’s, an optical monitor and a dielectric gap. 

Inductances of Individual Vacuum Chamber Elements 

We have divided the damping ring vacuum chamber into a 
number of recognizable pieces, for which we have then calcu- 
lated the effective inductance L (as described earlier), in order 
to get an estimate of their relative importance for bunch length- 
cning. Such an approach is reasonable so long as neighboring 
pieces are not too near each other and so long o 2 a/2, with 
a the tube radius. Whenever possible noncylindrically sym- 
metric objects were modeled by cylindrically symmetric ones 
that were deemed suitable. Table 1 gives the results for the 
elements that are inductive to a 6 mm bunch - the nominal 
bunch length at a ring voltage of .6 MV. The factor in column 
3 is an azimuthal filling factor used to account for the contri- 
bution of noncylindrically symmetric objects. We see that the 
QD bellows, the masks, and the bend-to-quad chamber tran- 
sitions account for roughly 60% of the ring inductance at a 
bunch length of 6 mm. - - 

Table 1. The inductive vacuum chamber elements. 

Not included in the table are the septa, each of which is a 
complicated obstruction in a 25 mm ID tube, and is therefore 
inductive. Using the computer program MAFIA’ on a simple 
three-dimensional model we estimate that L w 2 nH for each 
septum. 

There are objects in the ring which are resistive, most im- 
portant of which are the two 2-cell rf cavities and the forty 
1” BPM cavities. At a bunch length of 6 mm the rf cavities 
contribute 5.8 V/PC to the ring loss factor k; we estimate that 
the 1” BPM’s contribute 3.2 V/PC. Other objects that are re- 
sistive at this bunch length, but contribute little to the ring 



639 

a Q of about 1, is due to the BPM cavities. Our calculation 
results for this resonance may be very inaccurate, due to the 
very approximate manner in which we included the BPM elec- 
trodes. The constant value of :2/n] at high frequency is due 
to numerical noise. Also on the plot - in dots - is the ring 
impedance with the QD bellows shielded, which, as we see, 
leads to a substantial reduction in impedanre. 

loss are two 2” BPM’s, two 1.4” BPM’s, two kicker gaps, an 
optical monitor, the ion pump holes and a dielectric gap. 

The Green IFunction Computation 

For our Green function we have calculated the wakefield 
of a 1 mm gaussian bunch, out to 15 cm behind the bunch, 
for the various damping ring vacuum chamber objects. The 
only exception is for the rf cavities, where a 2.7 mm bunch 
was used, due to limitations in the computer memory available 
to us. In order to properly include the interference effects of 
neighboring objects at frequencies above cutoff, the wakefields 
of the entire QD and QF segments were each calculated in one 
piece, To account for the noncylindrical symmetry of the BPM 
electrodes we have performed the calculation for each segment 
twice -- once with and once without cylindrically symmetric 
electrodes - and then added the two results in the ratio 8:2, 
acc.ording to the azimuthal filling factor of the real electrodes. 
Bowevcr, the calculations of the pump slots, as well as of the 
remaining objects found in girders 5 and 8, were all done sep- 
arately. Objects that were not included are the septa, the ion 
pump holes, the optical monitor, and the dielectric gap. The 
resulting Green function is shown in Fig. 5. 
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Fig. 5. The longitudinal wakefield of a 1 mm gaussian 
bunch in the SLC damping ring. 

By convolving the Green function with the current dis- 
triblition of a 6 mm gaussian bunch, we obtain the wakc- 
l?eld shown in Fig. 6, which is clearly very inductive. In 
Fi= 7 we dispay the ring loss factor k and the effective in- 
du~tance L due to a gaussian bunch, for a range of bunch 
lengths. The dotted curve gives the loss contribution of the 
rf cavities alone. Finally by taking the fast fourier trans- 
form of the Green function we obtain the impedance. In 
Fig. 8 we plot 12/n] (note that the ring circumference is 
35 m). We see a large peak at 16 GHz, with peak value 
5.5 D, and Q of 2, which is mostly due to the bellows. A 
smaller resonance, at 6.5 GHz, with peak value 4.4 n, and 

(V/PC) 

-2 0 2 

et/cm 

Fig. 6. The longitudinal wakefield of a 6 mm gaussian bunch in 
the SLC damping ring. The current distribution is also shown. 
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Fig. 7. The loss factor k and the effective in- 
ductance L of the damping ring as function of 
bunch length. The dotted curve gives the loss 
contribution of the rf. 
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Fig. 8. The impedance IZ/nl of the damping ring. 
The dots give what remains when the QD bellows (with 
their antichambers) are perfectly shielded. The power 
spectrum of a 6 mm gaussian bunch is also shown. 
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