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The possibility of the existence of spherically 

symmetric neutrals (electrostatic potential drope fas- 

ter than l/R) of collective coupling states formed by a 

large number of electron8 and ions is diacueeed. It is 

ahovn that such statea may exist in a quasineutral ion 

been and in the frame of ions may be attached to the 

neutral plasma forming of chaotic moving electrons and 

ions at rest. 

hethods of transport of high-current ion bean8 

(HIB) 11-41 have to meet the requirements of neutreli- 

tation of large self fielda and conservation of HIB 

quality. The main paradox of the problem of neutraliza- 

tion is the folloring: initially, there are tvo cold 

flors of electrons and ions, finally, there is one uni- 

form mixed electron-ion flor of larger entropy. There- 

after, the grorth of entropy is the consequence of neu- 

tralization processes and a high degree of charge and 

current neutralization may be attained only if there is 

an effective channel of relaxation of the electron die- 

tribution function. A mechanism of instability of the 

virtual cathode train vas cosidered in our report ES1 

where we investigated mainly time-dependent evolution 

of electron flov and did not consider the behaviour of 

ions. 

Relor re shall consider an intermediate stage 

of less entropy than the neutralized stationary state. 

This stage permits fast thermalization of the electron- 

ion system, i.e., the grorth of HIS emittance may be 

considered in the following. 

The main concept of this atage is the collec- 

tive coupling state (CCS).At first sight a quasineutral 

ion beam Is similar to a moving plaema medium. But as 

distinct from the plasma even the concept of partial 

thermodynamic equilibrium is not applicable to its dea- 

cription, at least up to the stage of full mixing of 

ione and electrone. Therefore, the concept of tempera- 

ture is absent also. The correlation phenomena appea- 

ring in 8 quasineutral HIEI arise from the CCS energy 

advantage. The moving regions of potential significant- 

ly differing from the average ( zero 1 potential of HIB 

is a manifestation of ccs. Such regions conaiet of 

quite a number of electrons and ions and the croae aec- 

tion of the CCS interaction may be large enough to lead 

to fast thermalization of the system. 

Here ve try to construct the eimplest spheri- 

tally-symmetric CCS in the ion beam frame. We shall 

find neutral CCS (the electrostatic potential drops 

faeter than l/R) transferred to the neutral plasma con- 

aiste of chaotic moving electrons and tons at rest in 

the limiting case of large radius. 

The Lagrangian of a nonrelativistic particle in 

spherical coordinates r, 4, Q 1s given by 

kf= (1/2m)(pz* pa+ pt) - elp + (e/mc)(prAr* pJAJ+ pOA,,,), 

vhere p, = m;, pg = mri, 
PO 

= mr$ sin B are mechanical 

momenta. Since re are interested in spherically symme- 

tric CCS, the conditions for the components of the VPC- 

tor-potential are Ar = A4 = Ay, = 0. There are knorn 

three constants of motion of a particle in the field of 

central forces: H - hamiltonian, N - full momentum and 

L - the projection of the full momentum on the polar 

axis. The transformation from the mechanical momenta to 

H, N, L is given by 

m*N 1 1 
D= - - 

R'*sin J 2m(H ?. ecp) - N2/R2 JN21R2 - L2/R2sin2d 

where the plus and minus signs represent ions and elec- 

trons, respectively. 

The distribution functions of the perticles 

should not depend on L in the case of spherically sym- 

metric states and ve define these as follow 

fe = fE.&(H - He)*Fe(N), fi = f;.S(H - Hi)'Fi(N) (1) 

To simplify calculations and evaluate restriction to 

the behaviour of the particle dletributions, re take 

the N-distribution in the following form: 

Fe(N) = N", Fi(N) = Na. (2) 

The constants He and Hi are defined from the conditi- 

ons: the full energies Hi = 0 (ions at rest) and He = W 

provided 0 = 0. Ueing eq. 1,2, one obtains the charge 

densities of electrons and ions: 
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1 N*Fe(N).dN 
ee = nm,fE - 

R2JmeW 
, 

2(1- Q) - N2/meWR2 

N*Fi(N)*dN 
, 

2(me/mi)@ - N2/meWR2 

13) 

where 0 = ecp/W and the integration is performed in the 

region of nonnegative values of the redical functiona. 

Substituting eq.2 in eq.3 and defining the quantitiee E 

and I by 

4n2eni 
1 = fY.- 

w 
'(ZmeWai/me) F2Fy!y!3 

eq.3 can be rritten as 

l+a l+l3 
2 

ee 
= v!m.E.Ra.(l 2 

-@) , ei a v!!-.I++@l , (4) 
4ne 4ne 

vhere B is Euler integral of l-at kind. Defining the 

nondimensional radius X and parameter G by 
1 a+2 

X = R.IP*2, 
-- 

G = E.1 8+2 , (5) 

the Poisson equation for self-consistent potential can 

be rritten as 

l+a I+6 
ld 

---0, 2 dm 
9 dX 

*.-$ = -G.X'*(l - 0, 2 + xB.m2* (6) 

This equation can be compared rith the Thomas-Fermi 

equation, obtained under aomevhat different conditions: 

distributed Ion charge instead of point charge and non 

Fermi-statistics of energy distribution. 

The boundary conditions are defined as 

1. al(e) + 0, @'cm) + 0, i.e., e,(m) t ei (c) + const. 

2. net potential of CCS has to drop faster than l/X 

when X + (D i.e. ve shall seek neutral CCS. 

3. charge densities have to be integrated and the elec- 

trostatic potential has to be limited at the center 

of ccs. 

In the folloving re restrict our consideration to 

the case of uniform electron distribution on N (a = 0). 

The condition ee(m) + const thus satisfied. Assuming 

that a = 0, eq.6 becomes 

l+a 
1 d dB 

-.-(X2.-) = -GJ1- + X6*@ -Y- . (7) 
9 dX dX 

With the given boundary conditions the neutral CCS can 

exist in the following intervals of the exponent a of 

the ion distribution function: 

1~ > a > 1 Here (P drops 

than l/X and 

-1 > a > -2 Here G drops 

than l/X4. 

asymptotically faster 

slaver than l/X*; 

asymptotically faster 

The asymptotic solution of eq.7 satisfying the 

given boundary conditions has the following form 

4 48 6 66 

(D = ,&.,i$ _ 
Giq,t’*a $G. tG. (p-2) 

l+p - 
+ 

2U+p? 

3-p 6p 2 -+-....-. 
G1*B.t1+6 1+6 

+ 
Cl+@3 

+ . . . (8) 

where t = l/X. 

Eq.6 was solved numerically to satisfy the 

asymptotic (8). There is only one value of the parame- 

ter G for each valuee g(O) and a satisfying the bounde- 

ry conditions. 

It vi11 be noted that another equilibrium state 

can be described by eq.6. This state is not transferred 

to neutral plaena. Let us change the boundary condi- 

tions as follow 

@(ml + 1, (D(e) + 0, B drops faster than l/X vhen X + o 

It is seen that such states can exist only if p < 0 but 

the electron and ion densities diverge as Xa rhen X + 0 

As distinct fros the firat considered case, here ions 

move and electrons are et rest rhen X + (D. Neutral CCS 

can exist only if a < -112. While the densities diverge 

In the center of CCS the potential is limited and elec- 

tric field is zero in the center if -1 < a < - l/2. 
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