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Abstract 

We present numerical and analytical results for 
FEL in the small signal, low gain regime. Both the 
oscillator mode and the cw injected case are studied. 

1 Introduction 3 Analvtic Results 

Free electron lasers (FEL) operating with radio 
frequency accelerators run into the well known 
difficulty connected with the “Lethargy”, which is a 
by-product of the combined gain and slippage mechanisms 
[l]. Owing to their different velocities the optical 
pulse slips over the electron bunch, consequently its 
front part experiences larger gain than the rear 
part.The laser pulse is reshaped and its centroid moves 
at a velocity lower than the velocity of light. The 
result is therefore a deceleration of the optical 
pulse. Two parameters play a central role in the FEL 
pulse propagation problem: 

Approximate solutions of Eq. 2.1 can be found 
for long electron bunch, A<<o, (i.e. for uc << 1 ) 

where : 
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1) The coupling parameter p’c = A/o, which is a 
measure of the relative slippage between optical and 
electron bunches (A = Nh is the slippage length and oz 
the rms electron bunch length). 

zo(d = ~~(0) - AlC,(v) -@I(1 --~~l 

2) The cavity length shortening BL, necessary to 
compensate for the reduction in the group velocity of 
the optical pulse and ensure continuous synchronysm 
between optical and electron pulse after each round 
trip (see Fig. 1). 
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The gain of an FEL depends on the above 
parameters. In this paper we will discuss a model of 
the FEL pulse propagation which relates lethargy to the 
dispersive property of the interaction. We present an 
analysis of the gain dependence on the coupling and 
cavity mismatch parameters and give simple formulae 
which reproduce the numerical scaling. Finally we apply 
the theory to the analysis of an injected signal [2]. 

~~(0) and cg (0) are the initial position and 
the r.m.s. half-width of the initial optical pulse 
assumed to be a Gaussian and finally the functions 
C1,2,3(v) are defined by 

Gu(v) = - 2r1(-i)‘-‘y ,” Cl + i ;)y’” (3.3) 

Cl(v) being the complex gain function.Equation (3.1) 
states that the optical packet centroid is shifted 
after each round trip, by a quantity zO(c) depending on 
both G2(v) and 8, and is a direct manifestation of the 
FEL lethargy. In fact, depending on whether 

Re G2 (v) - 8 < 0 or > 0 (3.4) 

the optical pulse is ahead or behind the electron 
bunch. The synchronism condition is satlsfied by 

2 Optical Pulse Propagation in an FEL 

The PEL pulse evolution equation valid for low gain (go 
( 1) and small signal is: 
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where E(z,t) is the slowly varying part of the electric 
field. v is the normalised frequency of the the field 
v=2nN(oc- o)/oe(wa is the resonance frequency) and N is 
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Fig. 1 Schematic of the FEL optical cavity. 6L 
represents the detuning from the nominal length Lc. 

the number of undulator periods.f(z) is the 
longitudinal electron distribution and go is the gain 
coefficient. The integral over q accounts for the 
effective gain. YT is the rate of loss of optical 
energy from the cavity. The delay parameter 0 is 
defined as 0 = - 4dIJgaA. 

(3.1) 

@ = - 2 = Recp 
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Referring to Fig. 1 we write therefore 

(3.5) 

2L L, L L, +s1, 1, +a, 
.-A=- +A+--.----+c (3.6) 
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where v is the optical packet velocity in the 
interaction region and according to (3.5) and (3.6) is 

c 
Y= (3.7) 
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The relation (3.7) which represents the average 
velocity of the optical pulse in the undulator suggests 
the introduction of the following refractive index 

(3.8) 

According to the above definition we can introduce a 
dielectric constant for the FEL, whose real and 
imaginary parts satisfie the Kramers-Kronig relations. 
In Figure 2 we show the stationary distribution of an 
optical pulse starting From an initially constant field 
For pc : 0.7. 

4 Stationary Solutions (Super Modes) 

The optical pulse reaches a stationary 
configuration after a number of round trips. These 
solutions can be Found analytically for I.I~ * 1 [61 

5 Optical Pulse Evolution in the Presence of an 
External Field 

because Eq. (2.1) reduces to a Schrodinger type To include a continuously injected external 
equation, Therefore S.M.s can be written in terms of optical field Eq.(2.1) must be modified to include a 
harmonic oscillator eigenfunctions and eigenvalues source term: 

2 
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Fig. 3 Spectral shape of the first three S&I for 
r.=O.l (a), and pC = 1 (b) 

G, - 8 
w =-- (G3 -‘I (4.2) 
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Evaluating the C functions at v = 2.6 we get 

Reh, I 0.85 [ 1 O.6Cn + l/2) pC 2CO.46 812 l,Imh, = 0 ( I( .3) 

Some examples of S.H. spectral shapes are shown 
in Fig 3 for pC =O.I and 1. It has been possible to 
derive a scaling law for the gain 

ReXn = - 0.85 ” [e”I;( 1+;j2n+q -I} es=0.46 
B s 

(4.4) 

The above parametization is valid For p,. up to 3. 

An interesting point is that the S.H.‘s in 
general form a bi-orthogoanl basis [‘/I. 

E(n + 1) = S{E(n) + HE(n)}FilR2eiO + Einj (5.1) 

The operator S shifts the field by 6L after it has 
experienced gain and HE(n) is the integral. The index n 
refers to the electric field after n passes and the 
coordinate z is implied.Qisthe round trip phase change. 
Solving Eq.(5.1) numerically with the initial 
conditions 

we can establish the changes that result From both 
interference effects arising from the dispersive nature 
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Fig. 4 Phase of the e-m. field as a function of 
position across the micropulse after 10 round trips 
for SL = 0. and V= 2.6. 

2 

Total 

I \ 
\ 0 C\ ” 

-4 ‘u’ 4 

-1 11111111111 
-0.08 -0.04 0 0.04 0.08 mll 

Fig. 5 The gain as a function of cavity length after 
10 round trips and for ~2.6; centroid gain (dotted 
line), integrated gain (solid line). 

of the gain and amplitude changes arising from the 
“absorptive” part of the gain. 

The total gain is enhanced by the high Q cavity 
and the peak of the gain as a function of cavity length 
is shifted towards longer cavity lengths. The phase 
shifts linearly with the number of round-trip passes. 
Numerical solutions to Eq.(5.1) with parameters 
corresponding to the UK FEL [2] were found for a 
variety of 6L and V. Fig. I(shows the phase as a 
function of position across the pulse For injection on 
resonance with the cavity longitudinal mode (ie. 6L: 0) 
after 10 round-trips. 

It is convenient to divide the cavity length 
scans into two categories: a)micro-scans and b) macro- 
scans. Micro-scans are defined as 6L variations less 
than one wavelength whereas the macro-scans are over 
many wavelengths. 

Injecting at a wavelength corresponding to v=2.6 
and scanning over lpm the gain grows exponentially 
whereas the gain outside this range decreases to zero 
as a result of the fluctuating gain per pass. This is a 
result of the away From cavity resonance wavelength 
experiencing large phase changes per round-trip causing 
equal loss and gain on average, The peak of the gain 
curve (as a function of SL) is shifted away from 
resonance as shown in Figure 5. Experimentally [2lthis 
shift of the peak has been observed in the UK 
experiment and is shown in Figure 6. 
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Fig.6 Gain as a function of 6L, as observed in the UK 
experiment. 
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Fig. 7 Total gain as a function of 8L after 50 round 
trips, for v:O; centroid gain (dotted line), integrated 
gain (solid line) 

The dispersive nature of the gain medium can be 
observed by injecting at v=O. Only phase changes occur 
and any intensity gain inside the cavity is due to 
interference effects see (Fig. 7). 
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