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Abstract

To measure the behaviour of particles at large amplitudes
in LEAR, we have developed a bunch autosynchronized
acquisition system together with precice FFT alogrithms
to analyse the data. Time-independent perturbation theory
has been used to find analytical expressions for the par-
ticle behaviour and has been applied to interpret the
Fourier analysis response to a transverse kick of the
beam. Non-linear amplitude dependent tune-shift due to
sextupoles and resonance compensation were obtained with
this system resulting in an improvement of the beam sta-
bility and ultra-slow extraction performance mainly at
low momenta (100 MeV/c).

1. ACQUISITION SYSTEM

A pulse train which is synchronized with the bunch centre
is electronically generated [1]. The synchronization is
automatic and essentially independent of changes in revo-
lution frequency and in length of the bunch. This pulse
train is used to trigger the acquisition of changes in
radial beam position after an automatic substraction of
the residual clesed orbit at the time of the measurement.
The burnch length is comprised between 40 and 400 nanosec-
onds.

2. THE MATHEMATICAL TREATMENT

The use of Discrete Fourier Transform (DFT)} presents a
number of major handicaps if one wishes to make selective
and absolute measurements of the characteristics other
than the frequency (phase, amplitude, damping) of the
betatron oscillations,

The mathematical treatment of the raw data uses a spec-
tral analysis (FFT) combined with mathematical algorithms
and iterative methods. This technique and the algorithms
which it derived from the analysis of errors
introduced by the Fourier transform when applied to the
measurements of betatron oscillations (frequency, phase,
amplitude and damping factor).

vses are

2.1 Sources of the errors

The physical process is sampled at the revolution fre-

quency (TS = l/frev)’ It is causal (triggered at an arbi-

trary time t 5 0 corresponding to the turn n = 0) and has
an indefinite duration (n—e) This can be represented in
time domain by:

n=

v (nT = T

y.(0T) = D'y (aT ) (1)
n=0

The spectrum of this signal

(= frev

of Shannon's theory { for frequency < LSS B

is continuous and periodic
and correspond to the true spectrum in the limits
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It could

be produced by a hyporhetical DFT with an infinite number
of samples separated by T:S
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where Y_(f) is the continuous and periodic true spectrum,

o
Y_ (f) the true phase and with

Y. Uf) the true modulus, Y
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continuous frequency < f
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In practice the DFT is made with & limited number of sam-
ples N corresponding to the original process y_ seen dur-
ing a time limited ‘N‘Ts) window w{t}.

The resulting spectrum is discrete and pericdic;
line is separated by aF = frev/Nd

each
One can express the

spectrum given by the DFT, by the convelution:

fiu f
rev
= Y_(£) x W(F 1)
f--0
s el
j [Yw(f') + W(Fk—f’n
e df (3)
with Fk = kaF, k is an integer; for the principal peri-
od 0 £ k £ N-1,

Each component YN(FR) of the spectrum given by the DFT of
N samples should be considered as a continuous wvector
summation of all the true vector components Y_(f} of a

period which are distributed on each line by a modulation
phenomena with all components of the spectrum of the
window.

The values of interest are the true modulus Y_(f} and

phase Y_(1). In this way we can see the errors introduced
by the DFT. To show that each complex component YN(Fk) of

the DFT represents the vector resulting from the window
distribution phenomena of the true spectrum on each line
Fk’ we write:

Y (F) = DY, ~k] (4)

2.2 Correction of the errors

Practically the true process can be written as the sum of

a principal damped oscillation ( frequency = qH-frev )} and
some perturbative terms: an other component of damped
oscillation (frequency = qV'frev ) and a supposed random
noise. We have qys Ay < 0.5.
n=e
y_(n) = Z[h(n) + vin) + b(a)]  with
n=0
—n/éH
h{n) = M}{ e cos(an_Hn + rf)}{) (5)
-n/(SV

vin) = Nv e cos(?nqvn + q‘)v)

b(n) = Nb'r(n)

vhere: ”H and HV are the initial amplitudes (for n =

0); 6H, 5\’ are
tude, r{n}= random function such that -1 € r(n) $ 1. We
want to measure Qs ¢H’ 5}{' [‘IH and we assume that

the damping constants; Nb= noise ampli~-
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frev=1/Ts=1. Generally ay and qy are non rational and

they are comprised between two lines ( kH and kH+1 for ay

and k., and kv+1 for qy ) of the DFT. The analysis has

%
shown that it is interesting to consider

windows, rectangular Wr(t) and sine Ws(t)<

two types of

The modulus of the two lines kH and kH + 1 of a DFT made

on N samples of the true signal (5), comes from the vec-
tor composition of the true spectrum of (5) distributed
1 .

on the lines kH and Ry + 1

Y (k) = <DW{H°°-RH] TV ~k,] + Uw[B«“'ku])

L = (Dw[lim—v\kﬁ ¥ 1)

+ BV~ (R 7 19T+ D (B~ (k¥ D) (6)
2.2.1 Frequency measurement with an analytical
interpolation method

If the damping factor N/BH is zero, we have shown that
[2-4):

with the rectangular window:

lenm—*(kH+'1)]

a = % ky + (7)
D, i~k T + Dw[}[w—v(k}{-kl)].

with the sine window:

2D [H —{k, + 1)
1 K W H _
Dw[Hw-+kH] + Dw[dw—*(knﬂ-l)]

P

(8)

We have also shown that the perturbative distributions
(noise and v(n) oscillation) are decreasing if N |is
increasing and if we use the With a good
choise of N it is possible to neglect these distributions
and we have in this case:

sine window.

YN(kH) 3 Dw{Hw—+kH] and

(9)

XN(kH+ 1) = Dw“{m"(k}{“' 1)]
This interpeolation formula assumes that N/éH = 0. if
N/5H is non zero, the minimum error (equal to =zero)
introduced by the interpolation, occurs when the true

frequency Ay correspond exactly to the middle of the

interval kH’ k. + 1. Hence, when the damping factor is

H
not negligible (N/é}1 > 1) we combine the analytic interpo-

lation method with an iterative convergent algorithm
which displaces frequency (by an adequate modulation) to
be measured to the middle of the interval between two
consecutive lines of the DFT. In this method, the evalua-
tion of the value of 3, is made with a "moving FFT". The

residual error is caused by the distribution of the noise
and other parasitic signals which have been neglected.

The analytical interpolation method gives a possible
decrease of frequency error by a factor of 10 to 1000. It
is important because the accuracy of the other measure-
ments depends directly on the accuracy of the frequency

measurement.
2.2.2 Phase measurement

The method uses the fact that if the frequency is knowi
we can, by an adequate modulation, displace the spectra
component such that it coincides with one of the line o
the DFT. In this case, by neglecting the distibution o
the other components, we can cbtain with the DFT a spec:
trum which ressembles the true spectrum of the displacec
component .

2.2.3 Damping mcasurement
For the damping measurement it is necessary to

the sensibility by wusing the rectangular window anc
choose N such that we have N/6H 2 2, We displace the

increase

spectral component gy on one of the lines of the DFT anc

we measure the frequency spread.

2.2.4 Hodulus measurements

yNuHﬂ and YbﬁkH+'” being the modulus of the two lines giv-

en by the DFT when the
the middle of the
measurement) we

true frequency was displaced tc
interval between two lines (frequency
obtain the modulus by an analytical

interpolation where the damping factor is included.
3. BEAM MEASUREMENTS

The unperturbed movement of a particle in a storage ring
can be written as {5])

J ZEZ(S)JZ cos [uz(s) + ¢O]

AR

(10}

where z stands for a particle's position in the horizon-
tal or vertical plane. B (s) and u (s) are called beta-
tron functions and phase advance at location s along the
trajectory, and are given by the ion optical properties
of the storage ring. J is an invariant of the motion giv-
en by the initial conditions of a particle.

3.1 Tune and phase advances
The measurements are of

particular interest for the
knowledge of the machine working point (QH, QV) and alsc

to correct beam trajectory misteering during the injec-
tion process.

If we use two horizontal (or vertical) pick-ups at dif-
ferent places we can measure the phase advance between
these points, compare it with theoritical values and
eventually find focusing errors.

3.2 Perturbations
An error of the guiding- and focusing

fields in a storage ring gives a perturbazion to the
movement of particles. The possible effects are:

electromagnetic

i. Tune shifts as a function of the amplitude of oscilla-
tion. To measure kicks of increasing
appiied to the whole beam and the tune
sured [6]. Figure 1
square of the applied horizontal kick for different com-
pensations of  the sextupolar
QH + ZQV = 8§ close to the working point.

force are
mea-
shews the change of tune versus the

these,
change are

Sysutmatic resonance

ii. Excitation of

nQ“ + mQV in the tune diagram. The perturbaticns can act

resonances along «certain lines

in one plane { nQ“ = integer or nQ,, = integer ) or gener-
v
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Figure I Amplitude dependent tune shift
ate coupling between the two transverse planes. Using a

Hamiltonian formulation and canonical transformations it
is possible to find the perturbed motion of a particle
[7,8). Consequently the additionnal frequencies appear-
ing in the spectra of transverse oscillations can be
related to particular resonance lines. The amplitudes and
the phases of the perturbation can be extracted from the
spectra, see Figure 2. The beam was kicked in the H
plane. From the oscillation in the H plane (a) we can
find the tune QH of this plane and the phase of oscilla-

tion. Due to coupling two peaks appear in the Fourier
spectrum of V oscillation (b). One corresponding to V
tune QV , the other to H tune that indicates a skew
quadrupole perturbation i.e. extraction of the closest

resonance line QH + QV = 5.

a correction was found.

resonance was compoens at-

From these spectra the phase of
After only three iterations this
ed. Using this information, correction elements can be
devised and powered to compensate the perturbation.
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Figwre 2: Measurement of linear coupling

3.3 Phase-space

In the special case where a resonance line is used to
extract the beam it is of particular interest to measure
the behaviour of particles. To reconstruct the normalized
phase space at the observed point, a possible way exists
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to find the derivative of the position of the particle

d . . . . .
(z' = a—‘;‘-). This derivative is computed using Fourier
transform and Lanczos factors [9]), see Figure 3. For

extraction at LEAR we use the resonance 3QH = 7 excited

field. Fig A shows the recorded
oscillations at a working point close to rescnance line.
Fig B shows the spectrum where 2 peaks appear, one for
the tune QH and one at ZQH indicating a resonance of type

by normal sextupolar

BQH . Fig C shows the computed derivative of x and Fig D

the normalised phase s$pace (dots). It shows a rounded
regular triangle. The stability limit given by the regu-
lar triangle is drawn in plain line. The result in phase
space is then compared to the theoretical set-up [10].
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Figure 3: Reconstruction of phase space

3.4 Simulation

These Fourier methods are also used ro analyse the motion
of particle from simulation. By using accelerator “mod-
elling” programs we can simulate the behaviour of a par-
ticle (or a pseudo-beam of particles) and analyse the
oscillations. It permits us to predict the necessary cor-
rections elements that will be installed in the machine.
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