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Abstract 

To rneas~re the beha$Tiour of particles at large amplitudes 
in LEAR, we have developed a bunch autosynchronized 
acquisition system together with precice FFT alogrithms 
to analyse the data. Time-independent perturbation theory 
has been used to find analytical expressions for the par- 
ticle behavigur and has bean applied to interpret the 
Fourier analysis response to a transverse kick of the 
beam. Non-linear amplitude dependent cunc-shift due to 
sextupoles and resonance compensation were obtained with 
this system resulting in an improvement of the beam sita- 
bi1ic.y and ultra-slow extraction performaxe mainly at 
lob momenta (100 ?leV/c). 

1. ACQUISITION SYSTEM 

A pulse train which is synchronized with the bunch centre 
is electronically generated [l]. The synchronization is 
automatic and essentially independent of changes in revo- 
lution frequency and in length of the bunch. This pulse 
train is used to trigger the acquisition of changes in 
radial beam position after an automatic substraction of 
the rcs idunl closed orbi: at the time of the measurement. 
The bunch lerigth is comprised between 40 and 400 nanosec- 
ends. 

2. TIIE MATIIEtlATICAL TREATMENT 

The use of Discrete Fourier Transform (DFT) presents a 
number of major handicaps if 1x161 wishes to make selective 
and absolute rneasureRlen-;s of the char,jctcristics other 
than the frequency (phase, amplitude, damping) of the 
hetatron oscillations. 

Tl~e mathematical treatment of the raw data uses a spec- 
tral analysis !FFT) combined with mathematical algorithms 
and iterative methods. This :echnlque and the algorithms 
which it cst2.s arc derived from tile analysis of errors 
introduced by the Fourier transform when applied to the 
measurements of betstron oscillations (frequency, phase, 
amp1 i tude and damping factor) 

The values of interest are the true modulus m(f’) and 

phase m). In this way we can see the errors inlroduced 
by tha DFT. To show that each complex component YN(I:~) of 

LhP In-T represents the Vc?CZOf result ing from the window 
distribution phenomena of the true spectrum on each line 
Fk’ wc write: 

2.1 Sources of the errors 2.2 Correction of the errors 

The physical process is sampled at the revolution fre- 
quency (Ts = I/frcv). it is causal (triggered at an arbi- 

rrary time t = 0 corresponding to the turn n = 0) and has 
an indefinite duration (n --) This can be represented in 
time domain by: 

Practically the true process 
a principal damped oscillation ( frequency = qHfrev ) and 

some perturbative terms: an other component of damped 
oscillation (frequency = qV.frev ) and a supposed random 

noise. We have qH, qV < 0.5. 

Y,!IITs) = 1 y,(n’rs) (1) 
n= 0 

The spectrum of this signal is continuous and periodic 
(- f I-‘?\’ ) and correspond to the true spectrum in the limits 

of Shannon’s theory i for frequency c f rev/2 ). It could 

be produced by a hyporhrt ical DFT with an infinite number 
of samples separated by Ts : 

Y,(f’) = YJf’) e 
j m 

(2) 
-- 

where Y_(f’) is the continuous and periodic true spectrum, 
- 

Y,(f’) t-tic true modulus, Y,(f’) the true phase and with 

O<f’= cant inuous frequency < frev and j = s/=?. 

In practice the DFT is made with a limited number of sam- 
ples N corresponding to the original process y, seen dur- 

ing a time limited (N.Ts) window v(t). 

The resulting spectrum 1s discrete and periudic; each 
line is separated by AF = frev/N. One can express the 

spectrum given by the OFT, by the convolution: 

- f‘-f 

YNiFk) e 
j YsiIf~ re” 

= 
I - - ---- 

Y,C f’) x W(Fk f’) 

f,-0 

- j [m+ W(Fk-f 1’1 
x <? df’ (3) 

k.iLh Fk = OAF, k is an integer; for the principai peri- 

od 0 5 k C N-l. 

i%wA~ component YN(Fk) of the spectrum given by the DFT it 

N samples should be considered as a continuous vector 
summation of all the true vector components Y,(P) of a 

period which are distributed on each line by a modulation 
phenomena with all components of the spectrum of the 
window. 

D k?‘m-+kl b’ CL) 

can be written as the sum of 

II-‘) 
y_(n) = xCh(n) + v(n) + b(n)] with 

n=O 

-n/a 

h(n) = Ml{ -e H co5 (2nyl + $,,I 

-n/6 
v(n) = i-1 v ‘e v cos(2nq”n + 9,) 
b(n) = Mb’r(n) 

(5) 

where: PI H and MV are the initial amplitudes (for n = 

0); dH’ 6” are the damping constants; N = noise ampli- 
b 

tude, r(n)= random function such that -1 2 r(n) I 1. We 
want to measure qH, d,, dH, NH and we assume that 
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f re”= l/Ts= 1. Generally qti and qv are non rational and 

they are comprised betwrcn two lit~cs ( kLi and k,(+l for qH 

and kV and kC,+ 1 for qv ) of the DFT. The analysis has 

shown that it is interesting to consider two types of 
windows , rectangular Wr(t) and sine Ys(t). 

Thr modulus of the two lines kii and kil + 1 of a DFT made 

orb K samples of the true signal (5), comes from the vcc- 
tar composition of the true spectrum of (5) distributed 
on the lines kH and kH + I : 

y,o = (D,,JH.,,-+k,l + D,iV,-$,I + $P_-$,I) 

YN(kH + I) = ( D [ti_-ikti + 111 w 

+ D,iV, -Cy,+ 111 + D,,,[B,-‘$+ Ul) 

2.2.1 Frequency measurement with an analytical 
interpolation method 

(6) 

If the damping factor N/6,, is zero, %i~ have shown that 

[Z-4]: 

with tte rectangular window: 

H + 
Dh, I II_+ (kti + 1) 1 

1 

(7) 

D 
W 

[Ii_-k,,] + D,[tl,-(kH+ l)] 

with the sine window: 

= +k 
2 D,[H_-Gll t 1) I 1 

¶li ii + 
.___..-.-.--- - -j 

2 
!F) 

Dk,[H,-'kH] + ~k,C~~_-+~k~l~ IfI 

We have also shown that the perturbative distribuCion5 
(noise and v(n) oscillation) are decreasing if N is 
increasing and if WC use :hc s inc window. ir’ith a good 
chaise of N it 1s possible to ~i~!>;lrr:t ttlesc distributions 
and we havt, in this case: 

YN(kH) * Dh, i )~,-$I and 

(9) 

YN(kH+ 1) = D,<[H_-(kH+ l)I 

This interpolation formula assumes that N/6, = 0. If 

N/6, is non zero, the minimum error (equal to zero) 

introduced by the interpolat iox, occurs when the true 

frequency r$( correspond OXaCt ly to the middle of the 

interval kt,, kH + 1. Hence, wt.r:rl the damping factor is 

not negligihlc! (N/d,, > 1) WC combine tt:e analytic interpo- 

lation method with an itcrativc C<>“VergL?“t a 1 go II it hm 
which displaces frequency (by an adcquat.e motiulation) to 

be measured to the middle of tile interval between two 
consecutive lines of thr I!I‘T. Ir: ttlis method, the evalu?- 
tion of the value of hi1 is made wi?h a “moving FFT”. The 

residual error 1s caused by the distribution of thr noise 
and other parasitic signals which have been neglected. 

The analytical interpolation method gives a possible 
decrease of frequency error hy a factor of 10 to 1000. It 
is important because the accuracy of the other mcasure- 
ments depends directly on the accuracy of the frequency 

measurement. 

2.2.2 Phase measurement 

The method USPS the fact that if tt:c. frequency is know 
we can, by an adequate modulation, displace the spectra 
camp-nent such tllat it coincides with one of the line o 
the DFT. In this case, by neglecting the distibution o 
the other components, k-e can cbtain with the DFT a spec 
trum which r~ss~mbl~~s ih~ true spcitrum OF the displacet 
component. 

2.2.3 Damping mcasuremcnt 

For the dnmplng measuremt:l:t it is r:eccssary tc irlnl-ciisc 
the sensibility by using the rectangular window ant 
ct100sc s st1ct1 that wc havca N/hi, > 2. We displace th( 

spectral component qH on one of the lines of the DFT ant 

we measure the frcqucncy spread. 

2.2.4 Modulus measurements 

.yd”H’ and Y) being the modult:s of the th-o lilies giv- 
id H 

en by the DFT wtien the true frequency was displaced tc 
the middle of the interval brtwewl two lines ( frequency 
measurement) we obtain the modulus by an annlyt ical 
interpolation where the danping factor is included. 

3. I~EAH MEASUREMENTS 

The unperturbed movem<:nt of a p<irt icle 
tan be written as (51 

in a storage ring 

x = ,fqGq CGS [vz(s) +- $,I (10) 

where z stand:, for a particle’s positio:l in tile t,orizon- 
tal or vertical plane. 13 (s) and I (s) are called beta- 
t ran functions and phase advance at location 5 <11oi:g the 
trajectory, and are gi\vcn by rhe ion optical properties 
of the storage ring. J is an invariant of ttlc motion giv- 
en by the initial conditions of a particle. 

3. 1 Tune and phasr advances 

The measurerzleuts are of particular i:it.errst fox- tt1c 
knowledge of the machine working point (Q,, Q,) and also 

to correct beam trajectory misteering during the izjec- 
tion process. 

If we use two hor’izontal (or vertical) pick-ups at dif- 
ferent places we can measure the phase advance between 
these points, compare it with theoritical values and 
eventually find focusing errors. 

3.2 Pcrtnrbnt ions 

A” error of the elcctromiigneLic gilIdlng- and focusing 
fields in a storage ring gives a pea-tui-bation to tllc 
mo~vcnwn~ of p,articles. The possible ef iccts ar-e: 

i. Tune :,lli fts as a fwlct 1011 of the arnplitudv of o>;r.ill;~ 
tloil. To ~E~SIII’C thrsr~, kir.ks of incl-o,tsing f-OLCC are 
app: icl:l to tlie whole beam and the tune c!ligngc a~(’ mt’ii- 
surf~:i [i,]. FigurP 1 zllCl:s tllib ch:3ngr: of tllnt~ ,‘PTSU!‘ the 
square of the applied horizont.el kick for difirrrrlt com- 
p c 17 s R t i 0 n s of illf syn:cwatic scxtupul‘il rP5C~:lililtP 

Q,, + 2’1” = is close tc the i<orking point 

Ii. Escitat ioiL of l-cSo,,<i”hPS n 1 o:,g I. 6’ I- I (3 i 11 ! I Ii E 5 
nLj,, + rnQ,, irl tilt. twlo rdiagr6m. Th(: p<lrturLnt icns ciin act. 

in one plane ( III+, = integer- or nQv = integer ) or gener- 
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i+we I: Arnpiitude dependent tune shift 

ate coupling between the two transverse planes. Using a 

Hamiltonian form~llntion and canonical transformations it 
is possible to find the perturbed motion of a particle 

[7,81. Consequcr~tly the additionnal frequencies appear- 
ing in the spectra of transverse oscillations can be 
related to particular resonance lines. The amplitudes and 
the phases of thv perturbation can be extracted from the 
spectra, see Figure 2. The beam was kicked in the H 
plane. From the oscillation in the H plane (a) we can 
find the tune Q, of Lhis plane and the phase of oscilla- 

t ion Due to coupling two peaks appear in the Fourier 
spectrum of V oscillation (b). One corresponding to V 
tutI+ Q 

v ’ 
the other to H tune that indicates a skew 

q~ladrupolc~ prrturbntioii i .c. c~xrrncriori of the closest 
resonance line Q,, + Q, = 5. 

From these spectr-a tlie phase of a correction was found. 
After only thrr<~ itcrntions t.hls ~<~son,anc~ wa:i compensat- 
ed. Using this information, correction elements can be 
dv\rised and pcu~rcd to comprnsati~ Lhr pert ur-bat ior]. 

to find the derivative of the position of the particle 

(2’ e g,. This derivative is computed using Fourier 

transform and Lanczos factors [9], see Figure 3. For 
extraction at LEAR we use the resonance 39, = 7 excited 

by normal sextupolar field. Fig A shows the recorded 

oscillations at a working point close to resonance line. 
Fig B shows the spectrum where 2 peaks appear, one for 
the tune Q H and one at 2Q, indicating a resonance of type 

3QH Fig C shows the computed derivative of x and Fig D 

the normalised phase space (dots). It shows a rounded 
regular triangle. The stability limit given by the regu- 
lar triangle is drawn in plain line. The result ln phase 
space is then compared to the theoretical set-up [IO]. 

1 _-..z..-_-. .._ 
Fifioe 3, Reconstruction of phase space 

3.4 Simulation 

Thrsc Fourier mrthods arc also IISE~ LO .ill‘ily.sP the mc>1 ion 
of particle from si:m~lation. By u:,~I~z; acceleratcr “mod- 
elling” programs WI: can slmulatc: tht~ behaviour of a pa:- 
title (01 a pseudo beam of part icles) tUld iinn Iyse the 
oscilletiotis. It. permits us to predict thr necessary car- 
rections eipments that. will he installrd ir. the m,xchine. 
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