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Abstract 

The question is discussed under which con- 
ditions a strongly magnetized star rotating 
with its vector of angular velocityw per- 
pendicular tc its vector of magnetic-dipole 
moment u might be able to evacuate a certain 
soatial-” reoion of acceleration" from elec- 
trically charged particles such as electrons 
and ions. A preliminary estimate based on 
the test-particle approach suggests that for 
this to happen the angular velocityw alas to 
exceed a "criti$g$ value” W, which is pro- 
portional to u ' . 

1. Objective of this note 

In this paper I will consider the possibility 
that an "orthogonal rotator", i.e. a rapidly 
rotating, strongly magnetized star of mass M 
rotating with its vector of angular velocity 
u perpendicular to its vector of magnetic 
aipole moment p may be able to evacuate a 
certain spatiaT "region of acceleration" in 
its surroundings from electrically charged 
particles. The existence of such a "region 
of acceleration" is a necessary prerequisite 
for the functioning of pulsars as cosmic ray 
accelerators (TOielheim, 1986). 

2. Basic assumptions and approximative 
procedures 

For this purpose I will perform an estimate 
on the balancing of gravitation and accele- 
ration reaction in the vacuum wave field of 
a rotating dipole. 

It is appropriate to point out that if in 
reality such an evacuated spatial "region of 
acceleration" does exist in the vicinity of 
a pulsar the electromagnetic field inside 
this region may well differ from the vacuum 
field, due to contributions produced by col- 
lectlve particle motion. 

Furthermore, for reasons of simplicity, my 
discussion will be restricted to nlaces near 
the axis of rotation, where the electromag- 
netic wave f:eld locally can be approximated 
by a plane c:rcularly polarized wave 

E = E, 

_H =u;{-r,cor-f+ 2, s;rryj (2) 

is the unit vector describing the 
%rection of wave propagation, which accord- 
ing to what has been said before, is perpen- 
dicular to y . z is the unit vector 
perpendicula? tooboth x and Y , such that 
these three unit vecto8 cons'tT?tute a right 
hand rectangular tripod. 

-t= w {t - x/c ) 

is the phase, and 

(3) 

E, = ii, = p/r; r. (4) 

is the wave amplitude determined by the 
radial coordinate r 
under consideration? 

of the test-particle 

3. Parameters involvec 

The rotational state of the magnetized star 
is characterized by the parameter 

TL = c/QJ (5 

which is the so-called "light radius", more 
precisely: the radius of the light cylinder 
Also the following parameter will be used 

W‘ = ek/mc, 

where e is the electric charge and m the 
mass of the test-particle. 

T, - (e&ncy2 (7) 

is the "typical radius" representing 
essentially the electromagnetic properties 
of the system at hand. The two parameters 
are related through 

w, /w = y,’ /T‘ r- (8) 

The “plane wave approximation" is justified 
as long as r is large compared with the 
"acceleration'boundary (Thielheim, 1987) 

TJ = ( Tr IT; p rr (9) 

lo = c z, = 2 e2/3 mcL (IO) 

is the “radiation reaction length". The 
gravitational acceleration of the test-par- 
ticle is 

9= t-M/d (11) 
where M is the mass of the magnetized star 
and r is the gravitational constant. Also 
use will be made of the “gravitational 
radius" 
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Subtracting these two equations of motion 
from each other leads to a non-linear 
differential equation for the phase Y as a 
function of the eigentime t (where again the 
point denotes differentiation with respect 
to the eigentime t ): 

rs z rfi /c2 (12) 

a. Equations of motion 

An electrically charged test-particle, e.g. 
an electron, finds itself subject to the in- 
fluence of the Lorentz force of a plane 
electromagnetic wave, which, for example, 
near to the axis of rotation, is a circular- 
ly polarized plane wave and subject to the 
gravitational force and the force of elec- 
tromagnetic radiation reaction. The appro- 
priate equation of motion is the Lorentz- 
Dirac equation with additional terms pro- 
viding for the gravitational =orce 

k = Ccl‘ uy SinY + U? m$Y 
I 

-JUokt?2[ii#-U’~J3a) 

by = W‘($/C)Sifo + r,$&-ic'u,](l3b) 

u, - WL(+/c)CM y t L$*-ic’uJ(l3c) 

uo = WL /uy5;nv + ,,,<,,s-+ gux/c+L&-“‘+W 

In the Lorentz approximation the ecuations 
of motion (13a) - (13d) reduce to 

Ur = W‘ I uy shy l uz wsv 
I (14a) 

UY . =w‘(y/w) sin? (14b) 

Liz = w,(+/w) tory (14c) 

k7 = WL uy 
I 

rinYt Uz easy 
I 

leading among other consequences to 

2 uo = - (WwlL f’ (15) 

. . 
UC = i;, (16) 

If the Lorenir approximation for i", c G 
and ii is introduced into those terms 8i the 
equatyons cf motion (13a-13d), which des- 
cribe radiation reaction, one arrives at the 
Landau approximation of which I only need 

Ur * (*“ UySinYtY-Y 
f 

) -y%/c + t, [fix -(~jZpux] 

(17.a) 

U, i- W, 
i 

uysiny+U~~.Y 
1 

- j%/c t La Ck - (zq'+QJ 

co (17b) 

+ = 3+/z - to (w‘/@JFy:J (18) 

From this, a corresponding non-linear 
differential equation is obtained fur the 
eigenfrequency 'L=+ as a function of 
the phase 7 

dgldy = j/c - G (wL/w)~ ‘I’ (19) 

5. Discussion of Limiting Cases -- -.-_ 

Before considering the question which was 
formulated at the beginning of this note it 
is useful to discuss two limiting cases: The 
first case is the one with no radiation 
reaction: 

dl ldy =g/c 
(20) 

i.e. 

'z - 2, = (j/cHY -0) (21) 

leading to an exponential increase of the 
eigenfrequencyp with increasing eigentime z: 

1 = 12%‘o4~erp~fz/C) . (22) 

Since the eigentime t increases monotonously 
when the time coordinate t does, the test- 
particle in this case experiences a wave 
field, which is increasingly blue shifted. 
Thus, the test-particle is globally accele- 
rated upstream falling onto the magnetized 
star. 

Alternatively, the second case is the one 
with no gravitational force: 

d’~ ldy = -to (w&g pi (23) 

i.e. 

Y’- v; = P/z,)+/~‘~Lw~ - v&J (24) 

leading asymptotically to a monotonous de- 
crease of the eigenfrequency Q with in- 
creasing eigentime z : 

‘2 --) (L+u‘).(~eq-‘h (25) 

Obviously the test-particle in this case ex- 
periences a wave field which increasingly is 
red shifted. Thus the test-particle is ulti- 
mately accelerated downstream receding from 
the magnetized star. This result is 
especially interesting because it demonstra- 
tes that it is with the help of radiation 
reaction that an electrically charged mass 
point can be globally accelerated by a plane 
wave field though it is well known that 
there is no such global acceleration without 
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radiation reaction! 

6. Balancing Gravitation and Radiation 
Reaction 

The differential equation (19) which deter- 
mines the eigenfrequency (i.e. the frequency 
of the wave as seen from an inertial frame 
of reference in which the test-particle is 
momentarily at rest) is easily solved 

‘I - q, = ; { tgxtvl?) - rgx(~/q 
(26) 

where 

?" = (W/WL). j/C% (27) 

and e 
y il (4"‘)+7jx- (281 

q0 and X are chosen by initial conditions 
such that 

?. - ?” $A (‘y;, /?) (29) 

i.e. 

‘2 I fi $A w+J (30) 

Asymptotically, for '? --$ 00 , one has 

q 3 ;i = const. (31) 

The suggestion of the present estimate is 
that while the test-particle moves under the 
simultaneous influence of a very strong 
force (the Lorentz force) and two very weak 
forces (the gravitational force and the 
radiation reaction force, respectively) 
the latter two forces have to compensate in 
the mean, while the test-particle performs a 
great number of loops (Thielheim, 1988). 
(A transverse drift motion superimposed on 
this quasi periodic motion is neglected as 
well as effects produced by the spherical 
structure of the wave field). 

Obviously, there is no global acceleration 
towards the magnetized star or away from it 
for 

w-i;; (32) 

which, by (4), (5), (6), (7), (11) and (12) 
is equivalent to 

c&J = (c/rrI,( r, l&p (33) 

This estimate is for just one single elec- 
tron as a test-particle. Still one has to 
notice, that although it is the electron on 
which radiation reaction is most effective 
it is but the proton on which the gravita- 
tional force is the stronger. Bearing in 
mind that the electron und the proton are 
coupled together by the need to keep the 
plasma quasi neutral, the "critical 

frequency" wc of rotation of the magnetized 
star, for which gravitation and radiation 
reaction are expected to compensate in the 
mean, may be estimated after replacing rG by 
l?Fo;o~FrC.~~-.i~~e~~ mp is the mass of the 

tJc = cc /rr ),( RG /iop 

The numerical value for this conservative 
estimate for a magnetized neutron3btar with 
the magnetic dipole moment I: = 10 G cm' is 
about 40 Hz. 
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