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Abstract. 

We report on S3, the static solver in the MAFIA group of 
rodes[l] for numerically solving Maxwell’s equations. This code 
is capablc of an improvrd formulation of boundary conditions 
when dealing with boundaries towardi an unbounded domain. 
We will demonstrate the resulting improvements in the solut,ion 
and report on first preliminary applications and their results. 

Introductigi 

As reported [Z], the MAFIA group of codes is extended by 
a solver for electro- and magnetostatic problems. For pre- 
and post-processing it uses the MAFIA modules M3 and I’3 
and thus the same approach of FIT-method (Finite Integration 
Technique)]3] and staggered grid allocation [a] for formulation 
of the relevant equations. The main emphasis in developing 
this code has been put on the improved formulation of bound- 
ary conditions when the calculation volume is an unbounded 
domain and on a fast performance (fast @‘-field calculation 
and a multigrid solrrr for Lig problems). 

Boundary conditions at open boundaries --.- .-___.. -. __- _______ 

The accurate modelling of boundary conditions is an essential 
part in defining a physical problem described by differential 
equations. U’hen dealing with a problem in an unbounded do- 
main, this is not always easy to perform. Symmetry planes and 
materials with confining properties can easily be modelled by 
Dirichlet or Neumann boundary conditions. But open bound- 
aries in terms of these boundary conditions are inaccurate and 
memory consuming. For an analytic approach t.o the solution 
oi differenrial cqunttons open boundaries can bc moved tohpartli 
infinity and the ramshing of fields at infinity can be used for 
correct f~,rmalation of l)c~u~ldary conditions. Thr requirement of 

a fiuite calculation volume in numerically solving a prob~elll 

leads to a half-hrarted approach In defining a huge mesh, 
open boundaries occur in a large but finite distance from the 
structure of interest.. There t.he boundary conditions for infin- 
ity are imposed.The huge mesh requires a lot of memory, the 
boundary values imposed are inaccurate and, for the boundary 
shape does in genrral not coincide with the shape of isovalue 
planes, one introduces wrong field shapes also. 
J?Te introduced a procedure [2], that uses an analytic approx- 
imation for these boundary values and couples them to the 
equations describing the inner domain. This analytic approxi- 

mation can easily be obtained from the multipole expansion of 
the current- or charge-distribution inside t,he volump of interest. 

Thr description of static problems can be reduced to Pois- 
son’s equation [5.8] 
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senting the charge or cui~rnt distribution. The xcnersl solu 

tion of Poisson’s equation 
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where q represents the total charge. (i’is the dipole moment, 
Qlk is the quadrupole tensor and ?‘is a unit vector. So. using 
the inner current.. or charge-distribution of the problem, 
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Figure la: The parallel plate capacit,or calculated with open 
boundary conditions Herr and in the next figure you see a 
2D cut of the 3D calculation showing equipotential lines of the 
electric potential 
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Figure lb: The parallel plate capacitor calculated with ordinary 
Dirichlet boundary conditions. 
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each boundary point can be described with 3rSitrar.y accu 
racy. drpendilig on the numhrr of multipoles taken into ar- 
count, This CRXL be done ill locally ralrltlating c,+ at thr capen 

boundarirs.Or, using tlial (3) j. , do r-depet~detit, ad/an call 
1,~ calculnt~d.Both m&h<& havr l~rn progra~ll~nc~d.Tllr lat tc~ 
allows an easier iieration scheme but might cause mathrmat- 
ical problems in applications with Neumann conditions at all 
boundaries. There will br further test,ing which method ia the 
best. In electrostatics, tests up to brow SWm to indicate that. 

the yuadrupolc as highest multipole contribution is suficirnt 
f or nlost applicaticuls. for higher multipolc5 vanish rapidly tu- 

wards the boundaricx.In magnetostatics higher order multipc4es 
might, be import ant. 

Prove of principle 

With a fairly simple three dimensional parallel plate capacitor 
the power of this formulation of open boundaries can easily be 
demonstratwl. WC made calculations on a farily small mesh, 
comparing a run with open boundary conditions to one with 
ordinary Dirichlet conditions.Figure la shows that the solution 
seems not to he influenced by the boundaries, while in figure 
lb you SW the field&aping influence of the Dirirhlrt l)oundary. 
Another fairly easy way to demonstrate the improvements is, 
comparing the potentials of a problem calculated anaIyticallJ 
to the solutions calculated numerically using both approaches 
for the open boundary conditions. Figure 2 shows the coral- 
parisom of the qualitative behaviour of a pointcharge potential 
calculated in the three different ways. 
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Fipllrr 2. Q\:aiitat:Lrr Lehavlour of the pointcharge potential. 
Here the ratios of potrntial values at equidistant steps r are 
plotted. They sho~~ld bphavc like II ‘1 II + 1 ).The comparison for 
analytically(-) and nunirrically calculatwl rrsults nith( ,,.I and 
without(V) open boun(IariC~~ art’ plottrtl. 

First applications in electrostatics -.__ .-.- 

First applications here show that it is necessary t,o put the code 
in a form that allows calculations with a big number of mesll- 
points. A lot of information users want to deduce from field 
calculations depends very senitive on the field accuracy. 1x1 

collaboration with tht- ZEUS detector groulj we calcnlatrd thr 
electric fields for the forward/rear driftchamber of t.his detrc- 
tor(figurr 3) 111. ZEUS is one of t,he two high energy physics 
experiments at, the new DESY p+, c- collider HERA [6,i]. Thr 

aim of a numerical rnodelling of bhis chamber was a param 
rter study tcs find an optimal set of I,otc,lltial values f(,r tllc, 
fit-Id shaping, strips to get a lii~l~l,-,fi”lill,)~l~ clf~ctrjc field ill the 
tlrift rrgiou. xvhicli allouid CI)PPI must of tl I(’ cliaml~rr.~l2] And 
to g,ct a realistic idea of t11P ~l:i~nlL~~r‘+ gas amplificatic)ii. tic-. 
termitietl by the rlwtric field claw ti) rhr wire surfaces. Most 
of the modelling has been done with a PROFI !5.123 2D a],- 

proach clue to memory yroblnns. But. the trstrhaml,er, used 

for calibration, has a geolnrtry that require:: a 3D ralclllatiron 
and due t,o a dielectric window there arc open boundaries t,o 
be modcllrd accurately. T~ICW cliitngrs iu t 11~ trstcl~amber con 

strurtion compared to the chamber usrd in the detector later 
might be important to judge the quality of the calibration clone 
with this chamber. For to know the gas amplification with an 
accuracy of 1 %, one needs to know the electric field with an 
accuracy of about, 0.05 %. T o ac leve accuracies in this order of h’ 
magnitude demands a very fine and well behaved mrsh. Which 
requires a lot of memory in itself, memory you do not want, to 
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F‘IKJI~(. 3. The FTD/HTD driftchamber of the ZEUS drtec 
tor.This is the design of the test chamber used for laser cal- 
ibrat.ion of the chamber’s gas ariipIificatiorl.Tlle driftchamber 
will be used as trigger for other drtector components and due 
to a high resolution (100 cl) will be important for path recon- 
struction. 
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Figure 4: Equipotential lines in a cut through the dielectric 
window.One can see the influencr of the window on the solu- 
tion even in this preliminary run with a coarse mesh. 
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IIW I.&II rhc modeliing of open boundaries instead, as codes with 
the ordinary way to treat open boundaries would require. 
01,1r 3D rnlculatimt~ perforiiiecl q.iite well fr~r the homogrurious 

part of tlic chamber.Also the influence of the dielectric window 
toi, t hc Ka; amplifiration could be drnic):istra!ed qualitiitiv~l> 
with the coht of a few extra meshplanes. Oiily close to the 
wires the mesh could not be defined fine enough, due to men- 
ory problems.For this rrason a better simulation of lines of con 
stant potential. iitnulating thic wires, has been introduced in 
additicnt to ihe St and& hlAFI.4-~,reprc,c~ssor input and has 
tc, l,t. :<Ytrd liC,I\‘. 

This examplt required a huge mesh( 140.1)0(~ mesh points), high 
accuracy, full 3D treatment and open bc~undary conditions.011 
au IBM 3Ob4 it took about 30 minutes of cpu-time with the 
SOR solver to obtain these rrsult,s.Thry indicate that with a 
few improvements that arc easy to incorporate, S3 is a useful 
tool for designing elcct,rost,atic devices. 

Magnet,ostat& 

In codes that numerically solve Maxwell’s equations for magne- 
tostatics, it is a COIIII~~ technique t.o reduce the problem -like 
in electrostatics- to one described by Poisson’s equation for a 
scalar potential. This is done by splitt,ing the magnetic field 
into two parts 191. One part is tii’ that in a purr mathrmat,i- 
ral scnsc represents all contributions of the ccmstant curra1t.s 
LThis mcrms I-i’ is a solution of 

I;i’.ds’= Jl .i.di 
” (4) 

This is in general not a sourcefree physical field.% it has to 
be cc8rrcctrc-l by a second part that comes up for the sources 
,,,‘lO.III< (‘(1 

j/I H’.d.i- J~,tiLwii 
~ 1’ 

with 

/ 
(2 -- I?) ds’ ~ 0 (6) 

For all current cont.ributions are already represented by E?‘, 
(H-G’) can be described by a scalar potential 4~ and the sum 
of both fir - grndmw is the physical field that, solves both of 
Maxwell’s equations simultannously.So the magnetostatic proh- 
lcrii ib riducetl 1.0 a direct so!ution for l?’ given by t,he curreiit,s 
and by an itcrativr solution for c$,,,wherr the same procedure 
as iri r!ettrtr<tatic\ caii be used. The fact that g’ only has to 
fulfill the mathematical requirements of (4) gives a lot of free- 
dom for its construction Even so some procedures used in 

distrihuttd codes need a tricky strategy to do this construc- 
tion W’e use a new and simple procedure developed at KfA 
Jiiclich [lOi that guarantees an easy performance independent, 
of thtz type c,f problem and boundary conditions. This easy 
procedure even allows to choose G’ in a way that makes its 
contributions sniall in permeable materials and so reduces t,hr 
problem of cancellation errors compared to other procedures. 
First pre!iminaty rltns for magnrtostatics indicate that the new 
Itrocedure for H’ is as easy to ltandlr as the mathematical thr- 
ory statcs.First applicati<ms, accuracy tests and rpu time coni- 
parison+ a.re just starting. 

Fir...i! ~e.mrrks 

1111 to a few irnprovemcnt~ and additicons to be n!wcle. the S3 
module has been put tc)grtlter.Co:rlparrd to other codes in>- 

p’.ovr~ll~!lth IlavP IW<71 Illitdca in tlic trt’iltllirIlt of opci: 1~ound 
aries, in the calculation cof the part of the magnetic field dr- 
scribed by the “clirl’‘-equntic,ri alone and its ii fast solver a 
nmlt igrid scolvrr has been added as option,! choice, Now a 
phase of testing and coinparing with mcasurement~ and ot,hrr 
est,ablislird codes begins. 
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