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Abstract 

The rate of protonium formation with corotating 
beams of p and H.. in LEAR is calculated taking into 
account the density and velocity distributions of the 
two beams, the ion-optical properties of LEAR, and the 
formation cross sections recently published. 

denote deviations from the central values within the 
same beam, and AP to denote the difference between the 
central momentum of the H- and the p beam. Betatron os- 
cillation (x,x-) is defined with respect to the central 
value of each beam. 

For protonium formation at time t it is necess- 
ary that the E,y,s of the two particles is equal: 

.Utroductioq 

The number of protonium atoms produced per set 
in LEAR by the reaction 

Y- = Y (4) 

E- = E i.e. x- = x t D(6P/Po) - D(liF-/PO) - O(AP/P) 

i + H- = (pp) t 2e (1) 

induced by corotating beams of H_ and p 1, 2, is calcu- 
lated in the present work. Details on calculations are 
available in Ref. 3. 

s- = s 

To get the foraation rate we have to sum over 
all p-H_ encounters per set and use the cross section 

The p (3109) injected at 609 MeV/c are cooled, 
decelerated to 308 MeV/c, and bunched over a fraction 
of the circumference. Then, an H- bunch with about the 
same intensity is injected onto the free part. The two 
beams can then be merged by adiabatic debunching. As 
the H- beam decays due to various stripping mechan- 
ismslpzf C the sequence of cooling, bunching and H- re- 
injection is repeated frequently until a new p beam is 
taken. 

for the corresponding relative speed. To this end, we 
need the density and speed distribution functions of 
the beam. As these functions have a simple form in the 
‘betatron phase space’ (x,vx,y,vy) rather than in the 
‘real’ space (F,v~,y,v~), we shall use the first ones 
(with Eqs. (3) to go back to real space). 

Cooling of the corotating beams can be useful 
to improve the rate. Electron cooling may, however, 
lead to a fast destruction of the H- beam due to strip- 
ping by the electronsz. If a sufficient lifetime can be 
obtained in these conditions the two beams will have 
the same averaged velocity, imposed by the electrons. 
With stochastic cooling or after debunching with the 
same rf, both beams will have the same revolution fre- 
quency. The calculations will be done for both cases. 

Let p~x,y,s,vx,vy,vs) be the phase space 
density of the beam where pdrx dav gives the fraction 
of beam with betatron oscillations in the range x to 
xtdx,v, to vxtdv,,y to ytdy,vy to vytdvy, and longitu- 
dinal position and speed deviations in the range s to 
stds,v, to v,tdv,. Here we use the “short-hand” nota- 
tion dav = dv,dvydv,, dax = dxdyds. 

It may be useful to reduce to zero the disper- 
sion (orbit separation due to a momentum difference) in 
the region where the protonium is produced (straight 
section 1 of LEAR) using trimming-power supplies for 
some quadrupoles to adjust the opticss. To find out 
whether this is worthwile, calculations have been done 
with both normal and zero dispersion lattices. 

A ‘test P’ with a cross section o will, in a 
time dt, *scan” a volume ovrdt for H- with relative 
velocity vr. As there are N-D-drv- H- in the unit vol- 
ume , the interaction rate of the test antiproton is 
dn/dt = N- l ~-(x-,y-,s-,v~-, vy-, vo-)a(vr)vrd3v- with 
the constraint (Eq. (4)) on the positions. To include 
all interactions in the unit volume at (x ,y, s) we sum 
over all Ngdsv p present. Finally, summing over the 
total volume we get 

dN/dt = NN.. ~v,o~v,)~-~x-,y,s,v,~v~~, -71 

j 
(5) 

~(x,y,s,vXrvyvs)dsx drv drv- 

The cross section u(vr) for proconium produc- 
tion versus relative velocity vr between p and H- is 
taken from the recent publicationssf7. 

In the following, to eva$uate +Eq. (5), we 
will express vr and P--P in term of v and v-, and as- 
sume Gaussian phase space distributions. 

A General Expression fox the Production Rate Momentum and Velocitv Difference Between the &-ms 

Assume that an H- ion of speed v_ and a p of 
speed v cross each oth-er (we measure velocities in a 
system moving with the p beam). We have 

To perform the integrations in Eq. (5) we 
will use the expression of the central momentum differ- 
ence between the two beams 

;- = (vE-‘vy-‘vs-)r 
+ ; = (VE,VY,VS), vr = ;- - ; . (2) 

Here x = (E,y,s) is the position of the particle, and E 
includes both the betatron oscillation (x) and the 
displacement due to momentum deviation CD dP/P): 

E = x t 0(&P/P) 
(3) 

F;- = x- t D(aP_/P) t D(AP/P) 

Above and in the following we use a subscript 
“-* for the H- beam, no subscript for p beam. Speeds in 
the system moving with the p are denoted by lower case 
v. sueeds in the Lab svstem bv caoital V. We use 6P to 

BP Amo AfJ Amo AVs 

PT 
=nOty2-=moty2r. 

B 
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S 

Distribution in the Lonqitudinal Plane 

For the coasting i beam we use a uniform 
spatial and a Gaussian speed distribution 

QS = (1/2nRovs)(l//2v)e -(v32& 

The standard speed deviation ovs in the $ beam 
system is related to the velocity spread in the Lab 
system. Using the Lorentz transformation we get 



v, = 
v5 t v 

z (1 - ZIvs tv=~+v (8) 
1 t v,v/c* 72 

i.e. for small deviations we have 

VI, = v, - v = v,/y2 . (9) 

Also in the Lab system (Eq. (6)) we have 

6V,/V = (l/-f2)(6P/P) . (10) 

We can therefore express ovs in terms of the Lab (rms) 
momentum spread as 

“vs = ww/P)),,, (11) 

Next we turn to the H- beam. The centre of the 
vs- distribution is displaced by Av,, which (Eq. (9)) 
is related to the Lab value AV, as follows 

Avs = y* AV, (12) 

We write then 

QS- = (1/2nRov~~)[l/m)e 
-(v,~-A’1,~~/2o:,~ (13) 

Here ovs- is related to the H- beam momentum width by a 
relation analogous to Eq. (11). 

Gaussian Distributions in Transverse Planes 

We take the phase planes uncorrelated such that 

Q = Qx(X,V,)Qy(Y,Vy)Q5(5,V5) (14) 

and we assume bivariate Gaussian distributions 

with 

Qy(Y,Vy) = (4-i5xnoyOvy )eArg (15) 

(16) 
Arg = (-I~~TY/~)(Y~/o~ f ~~~~~~~~~~~~ J-F-7 + v;/Q$y) y y 

where ay,Sy,l 
K 

are the Twiss parameters8 of the ring 
lattice. In t e Lab system the standard deviations 

OyLab = (l/f,vqy, %yLab = (Bclf,)~y (171 

are given by the beam emittance cy (defined here as 
“area/n”). 

A Lorentz transformation of the transverse 
components 

y = Y, vy = (l/y) vy/(l + VVJCZ) = VylY (18) 

gives the standard deviations in the fi beam system. 

oy = (l/f,)q, ‘IVY = (Syc/f,)G (19) 

Analogous expressions hold for the H- distribution. 

In the horizontal plane a similar bivariate 
Gaussian distribution in x,vx is assumed. As D is f 0 
we have to fold the betatron and the momentum distribu- 
tion to get the (ElvE) density. Using Eqs. (10) and 
(191 we get 

EL& : F. = X t D=f2(6V,/@C) = X t D(v,/Bc) 
(20) 

E- = x- t D(Amo/ma) + D(v,-/SC) 

VE = vx t ~D'v, 
(21) 

VE- = vx- + yD’v,- + @ycD’(Amo/ma) 

Evaluation of the Integrals in the Transverse Planes 

Substituting the Gaussians (71, (131, (l5), and 

expressions similar to (15) for Qy-, QE and Ed into 
our basic Eq. (5) we can evaluate analytically five of 
the nine integrations. 

Performing the change of variable vy- = vytvyr, 
the integrals over y and vy can be carried out. 
Denoting 

I~(v~~) = 7 7 ey(y,vy)ey-(yrvy+vry)dydvy (22) 
-ca -aa 

we get 

IY = (l/4n<cy>y)e -(By/4(Ey))(VrylgCY)’ (23) 
with 

(EY) = (Oyavy f ~,~~.,~)/~28w-i55y1 (24) 

In the horizontal plane two integrations can be 
done despite the complication given by Eqs. (20) and 
(21). In analogy with Eq. (22) we define Ix and we get 

IX = (1/4n(c,)v)e -(1/4(Ex))(rxu:+2a,U,X,tg,X:) c25j 

with 

<EX> = (oxo”x + ~X-OV..) / ( 2Prc~l 

in complete analogy with Eq. (23), and 

U, = vtr - -yD'v,, - @ytD'Amo/mo 

X, = -D(v,,/@c t Ams/ma) 
(26) 

Intesration in the Lonsitudinal Plane 

In analogy with Eq. 122) we define I, and, 
puttrng vs- = vs + vrs, we get for t.he longitudinal 
plane 

Is(v,r) = {1/[(2nR)22(o)fi]}e -[ (Vsr -Avs)/2<o>12 (27) 

where 

(012 = (&. t o$,J/Z 

Numerical Intesration Over the Relative Velocity 
and the Longitudinal Coordinate 

Using the integrals Iy,Ix and I, we can write 

dN/dt = NN- JJJJ dsdv~rdvyrdv~r~(Ivrl)IvrlIx(s,vEr,Vsr) 

Iy(s,vyr)Is(vsr) (28) 

From the integration over the cs components at 
s, we get the differential rate dn(s)/dt = dN/(dtds) at 
s. To get all protonium formed we integrate numerically 
dn/dt over the LEAR straight section 1. 

A computer code has been developed to perform 
these integrations, taking the lattice properties of 
LEAR and measured or calculated cross sections into 
account. Some representative results will be discussed. 

Protonium Losses on the Wa& 

Protonium emerging from SSl with a too big 
transverse speed will be lost on the exit window that 
has an effective radial width of 2W = 95 mm and an 
effective height of 2h = 50 mm. 

From the momentum conservation it turns out 
that the transverse -velocity of protonium is nearly 
equal to that of the p that created it. If that 
assumption is used it appears that the losses are 
negligible for sY and ~~ less than 10~ mm.mrad, 
2(6P/P)rms < 0.001. 



For large emittances or large 6P/P more de- 
talled loss calculations are necessary. 

eesults on the Formation Rate 

Formation rates for various representative 
values of beams emittances and 6P/P are shown in Tables 
1 and 2 for N = 109 p and N- = 109 H-. The formation 
cross sections used are that published by Bracci6 and 
Cohen’. 

In Table 1 the emlttances and aP/P of the two 
beams are supposed equal. 

Table I 
Protonium rate for various beam and lattice con- 
dltions Emittances here are defined to contain 95% 
of the beam. Momentum spread 1s such that 95.5% of 
beam is in the range PO + 6P [6P = 2(6P)rms]. 

-- 

-- 
D 

m 

3.59 
3.59 
3.59 
3.59 
3.59 
3.59 
3.59 
3.59 
3.59 
3.59 
---- 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
-- 

; & H_ 
---~ 

Ex = Ey !6P/F 

IT mm.mrad 

0.1 
0.2 
0.25 
0.4 
0.5 
1 .o 
1.5 
2.0 
5.0 

10.0 
_-_--_--_ 

0.1 
0.2 
0.5 
1 .o 
2.0 
5.0 

10.0 

‘/oo 

0.1 
0.2 
0.25 
0.4 
0.5 
1 .o 
1.5 
2.0 
5.0 

10.0 
_---. 

0.1 
0.2 
0.5 
1 .o 
2.0 
5.0 

10.0 

Atoms/set (1041 

:qual Frequency Equal Velocity 

Bracci ‘Cohen %racci “Cohen 
--- 

0.0000 0 I 0000 0.0000 0.0000 
0.0001 0.0077 0.0000 0.0034 
0.0009 0.0317 0.0004 0.0169 
0.0320 0.2940 0.0221 0.2067 
0.0928 0.6066 0.0716 0.4669 
0.4793 1.1634 0.4456 1.6134 
0.5834 1.6775 0.5654 1.6109 
0.5443 1.3325 0.5353 1.3032 
0.2138 0.3556 0.2120 0.3546 
0.0627 0.0929 0.0627 0.0928 

------- __----- -------- -_----- 

'24.31 26.966 189.099 7.3147 
140.54 47.4774 201.632 17.5466 
24.94 50.730 124.087 36.8787 
46.022 31.050 49.058 31.3180 
11.297 10.628 11.602 10.8713 

1.1267 1.3441 1.133 1.3508 
0.1659 0.2181 0.166 0.2184 

In Table relatively large emittances and 
momentum spread of the H- beam are assumed as they were 
obtained in LEAR in the past with a low brightness H.. 
source and without cooling of the H- beam. 

Table Z 
Protonium rate for an H- beam with Zap/P- = 5 o/00, 

Ex = 4011 mm mrad. cY = 2lJn mm.mrad, and p beam con- 
dl tions obtalnable III LEAR. Definition of emit- 
tances and 6P/P as in Table 1. 

1 Atoms/set (104) 1 

26P/P 1 Equal Frequency 

---- 

. - 

i 

J 

Tohen 

0.1866 
0.1499 
0.1138 

0.2887 
0.2253 
0.1657 
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fectly overlapped the efficiency increases when E and 
6P/P decrease. The difference of speed insures that the 
range where the Bracci cross section is zero is never 
reached at low emittances values. Its longer tail at 
high velocity privilegiates slightly the Cohen’s cross 
section at high E and de/P. 

Normal latt_*_i. The main effect is the higher 
rate obtained using the Cohen’s cross section. This is 
again explained by the tail a-t large vr: due to dis-. 
persion and mass difference a p and an H- need a finite 
velocity difference to meet at the same horizontal 
position, 

Equal Velocity 

Zero-dispersion lattice. The efficiency grows 
at low E and 6P/P. As there is no difference of speed a 
maximum appears in correspondence with the maximum of 
the cross sections. At large F and 6P/P the same con- 
siderations as for equal frequency apply. 

Normal lattice. The same considerations apply 
as for equal frequency case. If electron cooling will 
allow to go down with E and 6P/P, one can reach the 
zone where the lattice with zero-dispersion is more 
efficient than the normal one. 

Concludinq remarks 

For the relatively large emittances of the H- 
beam as used in 19863 the protonium detectable per set 
at the BHNlO window will range between 1000 and 3000. 
The exact value will depend on the efficiency of p 
cooling (maximum gain is a factor of 2) and on the 
presence of the trimming power supplies to have D = 0 
(maximum gain 40%). The uncertainty due to different 
cross sections for protonium production is 30%. 

Electron Cooling, if applicable without H- 
stripping, will allow to reach the zone of maximum 
efficiency. The gain is then especially pronounced for 
the D = 0 lattice. Clearly, the improvement is due to 
the small H- beam size. If a bright enough H- source is 
available, these conditions could also be reached by 
beam collimation. However, in both cases, intrabeam 
stripping4 can be very strong, leading to a fast decay 
of the H- beam. 
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