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Optics Effects & Options for TeV Colliders - II* 

J.E. Spencer and B. Zotter 
CERN, CH-1211 Geneva 23, Switzerland 

Abstract In a previous report* a number of possibilities were 
considered with emphasis on the linac latt,ice. Here we concen- 
trate on the final focus system. Even with the small emittances 
assumed, one still has significant nonlinearities at the interaction 
point which must be corrected locally and/or globally or other- 
wise nullified by upstream matching or by reduction or distortion 
of the phase space volume. Questions of round or flat beams and 
achromatic? spatially achromatic or dispersive optics are consid- 
ered in this context. 

1. Introduction 
We begin by considering the transfer functions for the basic 

dipole, quadrupolr and higher-order multipoles required for such 
systems. The transfer functions for individual elements or com- 
bined function systems can be calculated in a way that satis- 
fies Maxwell’s equations. Some useful applications for combined 
function magnets are given. Next, we consider their combination 
into the basic subsystems t.hat, have been used to design complet~e 
final focus systems. Different solutions are then compared and 
analyzed with respect to emittance ilIlC1 optics. 

2. Optical Transfer Functions 
The transfer function is suppose to transform a single particle or 
distribution of part,iclrs of type a with any initial coordinates to 

final coordinates for particle type b, as accurately as practicable 
i.e. {?,,p7, Z:, t,}, --t {r’/,Ff,S;, tf},, By convention, we call this 
mapping Maa and the set of variables to be transformed h: 

2; = Mob .Sf il! 

In the linear approximation, calculations simplify considerably 

since it may be possible to ignore individual multipoles and deal 
with lumped elements such as cells or superperiods even with 
considerable energy loss. The cost, of this simplicity, while conve- 
nient for the design process, is a loss of information content e.g. 
one essentially determines only the paraxial interaction point and 
various tunes but, in no way determines whether the system will 
work or not! 

A. Zeroth and First Order 

The zeroth order defines our choice of variables and reference 
systems. A reference orbit which is a straight line such as required 
for a linac or final focus system( FFS) is defined absolutely as soon 
as we place the first element. The reference trajectory in a bend- 
free. perfectly-aligned system is then a straight line which can 
be a physical trajectory even in the presence of the beam-beam 
force. 

Bending effects complicate the situation in various ways but 
can be calculated and compared to observation so that the ze- 
roth order agrees with the asympt,otic trajectories outside the 
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magnets[l]. For our purposes, bends are t,o be avoided because: 
I) The central orbit radiates - complicating the optics and in- 
creasing emittance. 2) They dictate an ‘unnatural’ spin quan- 
tization axis and 3) Generate chromatic and geometric aberra- 
tions in all orders. 4) The strengths of these abberations compete 
with those of quads and sextupoles in typical lattices[2]. 5) They 
are also the sole source of pure chromatic aberrations like (x16”) 

which must be corrected. All of this leads us to use a differ- 
ent kind of optical element that combines dipole and sextupole 
fields[3] which allows reducing the bend field at the expense of the 
sextupole. This, in turn, implies a combined quad and octupole 

system[3] for the chromatic correction cells. 
Referring to Fig. 1, we define the zeroth order as 

5” = {F,$+~,?i}, z {?,poi,f},, (2) 

‘which is a helicity representation for the spin and an actual or- 
bit for a real particle. In first order, relative to Za, we use t,he 
canonical variables 

-6 = {x,y,x’,y’,,-,O,ml,~), (3) 

where the spin coordinates m,,+ are equivalent to Chao’s cl,/?. 
With symmetry of the fields about a midplane(y = 0 in Fig. 1) 
and perfect alignment, it follows from the transformation prop- 
erties of the basic optical elements[2] that a system will be: 

1. -4chromatic to first order in any direction free of bends. 

2. In second order it is ‘ageometric’ in these direct,ions. 

3. In higher order, it is generally neither of these. 

Brown and coworkers[b] have shown how to make such systems 
achromatic to second order. However, this involves the imposi- 

tion of bends in one form or another. 

C. Second and Higher Order 

Suppose we solve the differential equations of motion for each 
element of a system to the necessary accuracy and represent the 

results by a Taylor expansion. Some terms may not be inde- 
pendent - some of which are numerically equal under symplectic 
conditions. These can serve as a check on the calculations but 

such symmetries and conservation laws are not imposed. For in- 
stance, quantum fluctuations can be included in the design pro- 

cess or used only for subsequent tracking. 
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Figure 1: Layout(to scale) of a Final Focus System for CLIC. 
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Let R,S and T represent the first, second and third order con- 
tributions to the total transfer function, in terms of the initial 
coordinate variables, so the transform from i .+ o is !1,2]: 

i?-, = Rb . sL + .yL3 . ??a . g, + TiJk 5, . c?~ zk + . (41 

where dots imply summations over repeated indices i,j,k. The 

transform to a final location 0 +f gives a similar result: 

cc: = R”r .i?” $ sr”” . so sp + . (5) 

Substitution of Eq. 4 into 5 then leads to 

E, = (RI+(S~+(T~k+(...).~k).~3).~~). ‘.’ (6) 

where 

R; = R”/ . R’, 

$7 = R”f . Sy + Sr” . R; R; (7) 

ijkl F, = R”r F;lk’ + Sr”” . (R:, . Tz’ + S:’ S,“‘) + TiJk . R;i $ 

Introducing only third order terms initially, gives terms up to 
sixth order. This would seem to justify the use of the full achro- 
mat principle i.e. correction of all 2”* order terms. However, 
the second order chromatic correction is global whereas third or- 

der geometric corrections can be done more locally. consistent 
with their sources[2]. This is also the basis of using even and 
odd, coIllbiIled-function magnets which concentrate the common 
sources of different aberrations. Lastly, reducing bends, effec- 
tively makes a system achromatic in higher orders. 

D. Higher Orders 

The phrase ‘linear’ in acronyms like SIC, CLIC or TLC is rather 
remarkable since it has been known for some time that these 
systems are quite nonlinear[5] and that this presents very real 

problems. A good illustration of high-order effects arose here. 
While it is well known how to get first-order, stigmatic focus- 
ing(i.e. a common crossover for x and y), this is not so easy in 
higher-order even with the low emitt,ances assumed. Fig. 2 shows 
the effect schematically for a CLIC solution that was uncorrected 
in third order. This case had (~‘y’~) .> 0 which effectively fore- 
shortens the vertical crossover. When the corresponding x term 
is negative, the points of niinimum confusion occur at opposite 
sides of the paraxial crossover(z=O at the IP). 
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Figure 2: Third-Order Geometric Effect in a Second-Order 
Achromat 

3. Emittance Effects 

Emit,tancr becomes a problem only when one wants to make it 
small or to keep it that way. The overall parameters for the 

CLIC FFS have been outlined by SchneU[‘i]. We have obtained 
some solutions with characteristics approaching these. A major 
problem is maintaining the emittance which is delivered to the 

FFS. In this respect, it seems useful to try to integrate the FFS 

with the Linac since it appears that it may well have similar 
problems. Regardless, one needs a scaling relation for emittance 
or preferably spot size at the FFS in terms of magnetic rigidity, 
bend radius, magnifications and the like. 

4. The Final Focus System(FFS) 

There are a number of approaches one can adopt such as not 
localizing specific sources but dealing with the problem globally 
e.g. minimizing the rms spot size at the final focus. Flat-beam 
FFS’s are an example[6] which concentrate on the direction with 
fewer chromatic terms - the non-bend plane. Another, tried here, 

is to concentrate only on spatial abberations. 

A. Telescopic Transformer 

It requires a minimum of four quads to get a first-order telescope 
with angular magnifications M,,, I$,,. In second-order one must 
deal with two chromatic aberrations in each variable. It appears 
impossible to make a.U of these zero with symmetries such as mul- 
tiple cells, equal magnifications and the like. Further. when one 
cascades n identical telescopes to compound the magnifications 

e.g. (M,,)“, it follows that: 

1. 

2. 

3. 

4 

5. 

6. 

Terms like (x]x’b), (xld3j or (yiy’x’“) etc., which are predom- 
inantly positive definite, grow as their respective magnifica- 
tions (M’;,M:,)“-’ where j,k are the orders of x’, y’. 

Thus, the last cell(and lens) dominate the aberrations! This 
has implications for correction schemes, magnet strengths 
and the number and symmetry of cells. 

The magnifications alternate in sign depending on whet,her n 
is even or odd as do all the various aberrations. 

Clearly, the higher order terms grow most rapidly. 

However. higher-order geomet.ric terms such as from fringing 
fields are usually small compared to the chromatics. 

Through fourth order, there is only one aberration in each di- 
rection which limits the 1uminosit.y: (XIX’S) and (y]y’S). This 
was verified with TI:RTLE[S]. 

Since we are interested in luminosity, we relax the telescope by 
constraining only spatial aberrations i.e. (xi .) and (~1. . .). Us- 
ing two telescopes at 1TeV with M, = 6 and M, = 18, as used 
in the configuration shown in Fig. 3, you obtain first-order spot 
sizes (u;=15nm, uf=125nm) with: 

l Input emittance E, = ty = 10w6m and 5,,, = iO.Ol%. 

l Likewise, for an input t, = ty = lo-‘m and 6,,, = 7tO.l%~. 

The results were obtained for a 151m straight FFS having 

1‘ = 2.5m and final quad gradient G=7.6kG/mm and length 
1=2m. They show the dominant aberrations are the two, second- 
order chromatics mentioned above since we reduced the input 
0: u = 40m by 10 to compensate the 6 variation. Such a system 
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Figure 3: Amplitude Functions[m] for CLIC with B=667 G. Figure 4: Distribution versus Position from the Paraxial Focus. 

is compatible with pure quadrupole compensation for the detec- Whether terms like (x/x’&‘) or (xIx’y”) are larger depends on the 

tor solenoid and allows the FFS to use pure permanent magnets emphasis between dipoles and sextupoles. Typically, one bal- 

with 5mm apertures. Because it has no bends, there is negligible antes such terms and declares success when they get the required 

perturbation to the incoming emittanre and polarization. spot sizes for the required E,,~ and 6. 
Our approach is to make the leading order chromatics in x:y 

B. Full Final Focus Systenls negligible by significantly reducing bends since sextupoles drive 
none of them[2]. One then corrects the geometries locally with 

The telescopes used above were combined with two chromatic combined-function quad/octupoles in the first two weak quads 
correction cells, each having 76m of 667 G dipoles, to give the 
configuration shown in Fig. 3 with I-471m. With [3:,,=40m, we 

of the telescope, taking advantage of the magnification factors 
discussed. Final focus systems at 1 TeV with lengths of z500m 

obtain first-order spot sizes(rr;=1511m. (~;=12.511111) with: and negligible emittance blowup with conventional technology 
appear practicable in this way. 

. Emittance F,= c,=10e6rn and JIIILII=* 0.25%. 

. This gives a factor of 25 improvement in acceptance for a Acknowledgements 
factor of 3 increase in length. 
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synchrotron radiation[9]. 

We then reduced the dipoles to 1OOG to eliminate emittance References 
blowup. This requires combined function magnets but without 
these or proper octupole corrections, this gave first-order spot 
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