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Abstract 

The analysis of a guided plasma wakefield accelerator 
is considered. It is shown by analytical and graphic 
resolution that the wakewave is propagative and that its 
phase velocity is greater than the light velocity. An 
expression of the potentials describing this system is 
also given: it appears that although the longitudinal wake 
field intensity is decaying, the transform ratio is still the 
same, so that the acceleration gradient is the one 
predicted by the infinite PWFA theory. We also notice that 
the focalisation is enhanced, especially for small bunches. 

Introduction 

This paper presents an investigation of the dynamics 
of a plasma waveguide accelerator. This is deeply inspired 
from the PWFA (Plasma WakeField Accelerator), developed 
by Chen et al. [II, Katsouleas et al.[zl, J.J. Su et al. [3j.The 
PWFA principle is as following: Let us pose to consider an 
infinite plasma, in which the ions are not supposed to 
contribute to the motion. The injection of a relativistic 
electron bunch, properly shaped, will generate, because of 
its interaction with the medium, a steady wafe which is 
in fact a plasma wakewave. This wave is the structure 
which will extract energy from the driving bunch and 
transfer it to a trailing group of electrons and then 
accelerate them. 

A disadvantage of this previous scheme is that the 
electromagnetic energy flux occupies volumes exceeding 
the region where the trailing bunch is accelerated. 
Whereas considering a plasma waveguide configuration, 
where the plasma has a finite radial extent and is 
surrounded by a dielectric, reduces the energetical flux 
area and concentrates it into the useful regions. 

This paper is divided into two sections: in the first 
one, we will determine the dispersion relation related to 
the guided configuration. The wakewave, generated by the 
interactions between the driving bunch and the plasma, is 
a travelling one, and can propagate with phase velocities 
vph> c (where c is the light velocity). In the following 

section, we will draw up the expression of the fields 
characterising the wakewave and compare them with 
those obtained in the infinite configuration. 

Dispersion relation 

So, let us pose to consider the plasma wave guide 
configuration described in Fig. I. The plasma column is 
assumed to be longitudinally infinite, but has a finite 

radial extent b. The plasma is surrounded by a dielectric 
which is limited at r=d by a conducting wall. 

We will then inject through the plasma a relativistic 
electron bunch, whose charge density is properly defined 

by a(r,E)=f(r).g(E,); &vt,t-z is the longitudinal component, 

vb is the bunch velocity and is supposed to be almost equal 

to the light velocity c 1. For our convenience, we will 
choose the radial and the longitudinal part of the charge 

density as: f(r)= D =const., 0s r <a; elsewhere, f(r)=O. 

gR)=L I -Lz$ F;< 0 ; elswhere, g(E)=0 

where a is the radius of the bunch, L is its length. 

Fig.l.Configurationofthe plesmawveguide accelerator. 

We will part this system into three sections: 
-the region (1) is inside the bunch : r< a . 

-the region (2) is the plasma area : asrgb. 

-the region (3) is inside the dielectric: b<r<d 

We will introduce the double Fourier Transform in z,t 

as:f(k,w)=jje-i(kz-dd)f(z,t)dzdt ; defining k and o to be the 
transform variables. 

By considering the equivalent dielectrics [41 

(containing no free charge) and by combining the Maxwell, 
Poisson, motion and continuity equations, we obtain the 
dielectric constants for the three sections as following: 

E, = Eo( 1- op2/oz - opb~/~o-vbt12 1 

and E3= & 
0 

where ~p2:noe2/mcO: plasma freqUenCy; 

and opb2=Ne2/mco.f(r)g(o.k) = beam plasma frequency. 

The mixing of the Maxwell equations, adding the double 
Fourier Transform, leads to the well known propagative 
equation for the longitudinal components: 

[ V12 -(k2 -02/c2 ci)] EZi= 0 ,where i=i 2,3. (1) 
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Viz is the transverse cylindrical laplacian =l/lar(rar I. 

The three mediums ere assumed to be UnlfOfm end 
isotropic, so the axial propagation constant k must be the 
same into the three sections in order to satisfy the 
boundary condition. 

The three solutions of eq. (11 must be matched at the 
boundaries. The boundary conditions et-e: 
at r=a : E,,(r=a) = E.zZ(r=a) (2) 

E, (r=a).Elr(r=a) = c,(t-=a).& &=a) (3) 

et r=b: E,(r=b) q E3(r=b) (4) 

cz(r=b).E2r(r=b) = c3(r=b).E3r(r=bI (5) 

at r=d: E,(r=d) = 0 (6) 
at r=O: E,,(r=O) is finite. (7) 

Let’s try to establish the dispersion relation by 
setting up the field components: 

- for & r < a : because of eqs. (i),(7), we have 

E,Z = A J,(@,r) , where 4 is the Bessel Function of zero 

order end @,2= o2 E, /c? - k2 >O 

- for ag r < b : eq. (1) leads to: T&= F Io@2r) + D Ko(lj2t-), 

where lo , K. are the modified Bessel Functions of zero 

order, and bz2: k2- w2c2/c? 10. 

- for birid: eqs. (1) and(6) leads to 

E,= G [ lo(@,r) K,,(@,d) - loM3d) K,,@,r) I , where 

e3:k2-02c3/$ >O end A,F,D,G constants to be determined. 

The fields satisfying the conditions (2),m, (4),m, we 
can eliminate the unknown constants and establish the 
dispersion relation 

-~,~e).Jo~~,a~/J,~@,a~~~@2/@3)L.H+P.QI/[L.S/@3+P.T/@2l(8) 

e32 - q= w2/c2 [E2-E3] (91 

1,’ - @,2’ 02/c2 [E&l (10) 

where L=l,(@3bHo(@3d) + lo(@,d)K,(@,b), 

H=Io(@2aMo(@,bJ - I,(~,b~~(@,a~, 

P=lo(@3bMo($d) - lo(@,dNo(@,b), 

Q=lo(@2a)K,(@2b) + Ko(@zaN,(@zb), 

S=l, (@2aMo(@2b) + K, (@2a)lo(@2bJ, 

T=i,(@,a)K,(13~b) - K,(@2a)L,(@2b). 

The two parts of eq. (8) et-e plotted in Fig. 2. The graphic 

resolution leads to: @,e= en; where pn=fi/2 +nlT At the 

first order (for n=O), @,a=TT/z The dispersion relation is 

propagative end is expressed es following: 

w2 = cd,,2 + k2c2 +(r(c/zat2. (11) 

Hence the phase velocity voh of the wave is greeter than c. 

The cut off is [o~~+(@,/%~~‘~; there won’t be any 

propagation below this value. 

Wakefields 

The above dispersion relation will be helpful for the 
determinatton of the wakefleld W = E+v,A B generated by 

the driving bunch. This wakefield could be simply 
expressed by considering the perturbed vector end scalar 

potentials A and Q, related by E=-VQ-l/c(BA/Bt). 

According to Ref. I 11. [21, [31, we derive: W,,=BI(AZ- Q) end 

W,=ar(A,-Q) , where W= W,, + W, ; (the longitudinal 

component of the field W,, contributes to the accelerating 

process, while the transverse part of the wakefield W, 

characterises the focalisation). One sets up the following 
equations: 

(V*z-kp2) (Ai; Qi) = -4nen(r,E) , where i=l, 2. (12) 

v12(A3z -Q,) = 0, inside the dielectric. (13) 

end $52 n(r,F;) +kP2n(r,E) = k,%(r,EJ (14) 

where n is the plasma density perturbation end kP =oP/c 

Equation (14) is easily solved : n’(-)(r,S):(e/e)f(r)G’(-)o, 

where +(-I means respectively ‘outside* (inside’) the bunch. 

G-(E) = -(ee/kJ(k,F,-sink,EJ for -L<[tO (inside the bunch). 

G+(S) = (2glTe/kP)coskPl, for El-L (outside the bunch). 
We also have to consider the boundaries conditions for 
the resolution of eqs. (121, (13): 

et r=e: (A,z-Q,+-a=(~-Q2)F~ 

E,(B)x~~(A,~-Q,&-~ = c2(aId,(~-Q21Fa. 

et r=b : (&-Q2& = (&- Q3&. 

c2(b) xar(A.gQ2)d = c3(b)xBr(&-Q3)r+. 

Therefore the potentials are expressed es following: 

(A,,-Q ,)=D*.G(~){-lo(k,r~K,(kpa)+T.I,(kpe~~l/kp%~, 0~ r<e 

()lh-Q,)=D*.G(s) I, (k,a) [l$,(k,r)-T.lo(k,r)l , ae<b 

(k-Q,)=D*.V.G(F;) I, (k,a) Ln(r/d) , by<d 

where $5 [&;?Ln(b/d)k,b l,(k,b) - lo(kpbI]-’ , 

T= - [K,,(k,bI + c2kpb Ln(b/d) K, (kPb)] IV, D*=4 n.eDa/k, 

The expressions of the longitudinal end transverse 
wakefield components ere straightforwerdly established 
from the above potentials. For large ‘b’ ($,b>>l), we obtain 

the potentials corresponding to infinite plesma case. 
These fields are plotted Fig.3,4,5 (full line for the bounded 
plasma, broken line for the infinite plesma f. 
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I r Conclusion 

The main difference between the infinite and the 
guided PWFA is thal the first is a standing wave 
accelerator while the other is propagative. By comparing 
these two cases, it appears that the intensity of the 
transverse wakefield of the bounded configuration is 
somewhat enhanced, especially outside the bunch (for 
radii r>a). For small bunches, the increase of the 
focalisation is perceptible inside and outside the beam 
as well. The fact the electromagnetic energy flux is 
concentrated in a limited volume might explain this 
enhancement. The intensity of the longitudinal field for 
the guided case is decaying compared with the infinite 
one. Anyhow, the transform ratio R, characterising the 
ability of the wave to transfer an energy amount from the 
diving bunch to the trailing one, doesn’t change whatever 
the configuration is. So the previous acceleration 
expectations are still on. Anyhow, further investigations 
have to be pursued. 
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