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Abstract 

A few comments on the subject of single particle nonlinear dynamics 
in storage rings are presented. 

Introduction 

If the accelerator optics is perfectly linear, the trajectory of a particle 
traces out a circle in the normalized phase space (q,p), as shown in 
Fig. l(a). The tune v (phase advance per turn Rn) is independent of the 
initial coordinates of the particle. We assume v is an irrational number. 

The picture becomes complicated when a nonlinear perturbation is 
added to the system. The first complication is the introduction of tune 
shift. For particles near the phase space origin, the tune remains v, but as 
the particle amplitude A increases, the tune shifts. As the tune changes, it 
can no longer stay irrational. The phase space trajectories then look like 
Fig. l(b). Circles are trajectories of particles that have irrational tunes. 
Discrete dots belong to those with rational tunes. As the tune varies 
between irrational and rational values, the pbze space looks like an 
infinitely layered sandwitch. 

But the nonlinear perturbation has another much nastier effect. 
Amund each discrete dot corresponding to a rational tune, an isIand of 
finite area is created, and immediately outside thz islands is a thin chaotic 
layer in which the turn-by-turn trajectory does not follow a smooth pattern. 
The existence of chaotic layers is the signature that the system is not 
integrable. As the islands acquire finite sizes, they break the neighboring 
circles. 

The islands and chaotic layers emerge spontaneously in the entire 
phase space, even close to the origin. However, by its nature, the 
nonlinearity has only a weak effect at small amplitudes. This means 
islands near the origin are extremely thin, and most invariant surfaces are 
able to maintain their existence (the KAM surfacesl) and suffers only from 
a small distortion from a circle. The distorted circles constitute invariant 
surfaces. The significance of invariant surface is that once it exits, all 
particles inside of it will not leak out, thus assuring their stability. 

The percentage distortion from circles is called the “smear.” As the 
amplitude increases, the islands grow in size, breaking more invariant 
surfaces2 However, not all circles are created equal, Some of them 
correspond to tunes that are more irrational than others, and they tend to 
break later than others. These tunes are those containing a fi in the form 
(n+mfi),k, where n, m, and k are integers. So, as the islands grow in 
size, these invariant surfaces persist for a while, but they are now more 
distorted from circles, i.e., the smear has increa.wd. Figure I(c) is a 
sketch of islands and chaotic layers. 

As amplitude increases fwlher, even the persistent invariant surfaces 
are broken by neighboring island chains which are now large enough to 
“overlap,” Beyond that point, the phase space looks like Fig. l(d). The 
islands still exist, but they now become disjoint, and they are embedded in 
a chaotic ocean. Particle motion is no longer bounded and instabilty 
occurs. The last invariant surface is called the “dynamic aperture.” 

Instead of Fig. l(d). a situation illustrated in Fig. 2(a) could 
happen. An invariant surface exists, but before the islands overlap, the 
tune shift with amplitude runs out of steam to close the islands from above 
and the dynamic aprture is reached prematurely. In practice, this is the 
situation to be avoided by pmperly choosing the nominal tune (except for 
resonance beam extraction in synchrotrons). To avoid the situation shown 
in Fig. 2(a) is to avoid resonances by choosing the tune so that 2(a) looks 
more like 2(b). 

Fig. 1. (a) Phase space trajectories in a linear system when t.he tune is an 
irrational number. (b) Tune shift makes the phase space an 
infinitely layered struchnz of circles and discrete doa. (c) islands 
and chaotic layers surround the discrete dots, breaking some of 
the circles and distorting others. (d) When the amplitude is lar.ge 
enough, all circles are broken, resulting in a dynamic aperture. 

We have thus identified several effects in an accelerator with 
nonlinear pertu&ations: Av(A), smear (A), islands and chaotic layers, and 
the dynamic aperture. Nonlinear dynamics is clearly quite complicated. It 
becomes even more so if more than 1-D is being considered. The most 
pronounced difference is that the existence of K&I surface means 
bounded motion for 1-D case (or 2-D case with a time-independent Hamil- 
tonian). Beyond 2-D, however, the invariant surfaces do not forbid 
particles leaking through intricate channels connecting the inside phase 
space to the outside (Arnold diffusion’). 

Canonica13,4,S*6 

Conventionally. theoretical studies of nonlinear dynamics anz made 
using perturbation theories. The idea is to first insist that the system 
remains integrable under the nolinear perturbation, and look for the 
invariant surfaces perturbatively. When a convergent solution is found, an 
invariant surface exists. Otherwise, an invariant surface does not exist and 

(b) 

Fig. 2. Phase space topology can be either (a) open or(b) closed. Case 
(a) is in general to bc avoided by avoiding the low order 
resonances. 



229 

In the 2-D case, near the resonance mxvx+myvy = integer, the 
Hamilton’s equation .I’=-aH/&$ gives Jx’/m,=Jy’/my which in turn yields 
an additional invariant condition 

“A- . m,Jv = invariant. (7) 

Since J 
resonan% 

z 0, this leads to the well known* conclusion that sum 
are unbounded while difference resonances arc bounded. 

If one of the two dimensions is the synchrotron dimension, near the 
resonance m,vx+msvs = integer, the invariant condition becomes 

m,J, f m,J, = invariant (8) 

one is in a chaotic region. Roughly speaking. there are two situations 
when the system is integrable: either when one is “away from all 
msonances,” or there is only one “single, isolated resonance” nearby. It is 
therefore in these regimes where a petturbative theory usually applies. One 
moment’s reflection shows these can at best be qualitative description since 
there is always an infinite number of resonances infinitely close by. 

The classical treatment is the canonical perturbation theory. It stans 
with a Hamiltonian 

H = H,(J) + E V($, J, 0) (11 

where J and 4 are the action-angle variables, V is the nonlinear perturba- 
tion which is periodic in the time variable 0. The unpzturbed Hamiltonian 
Ho includes the tune shift effect with v(J)=dH&I. A review of alter- 
native perturbation approaches can be found in Ref. 5. 

The trick is to try to make a canonical transformation from (J, 4) to 
(Jl, $I) by a generating function. The transformation is chosen in such a 
way that the 0 and 6, dependencies are removed so that we end up with a 
Hamiltonian which is a function of Jl alone. This can be done perturba- 
tively. To first order in E, this is done by choosing the generating function 

F(4, J1, 0) = 4 J1, + E G(@, J,, 8) (2) 

with 
e+zrr 

G!$, Jl> 0) = 2 2 sininmv 
Q 

de’ v 
m 

(J1, @) eim[$+v(8-e’-ir)I 

(3 

where v,(J, (3) is the rn-th Fourier component of V. The transformed 
Hamiltonian is 

H,(Jt,i$, 0) = HoCJI) + W2) (4) 

The perturbation is now second order in E. If this is ignored, we have 
Jl= constant of the motion, and the problem is solved. In particular, the 
phase space contours arc just the Jl contours. Note that since J = Jl + E 

~G/&$I,, the term E K;/@, gives the first order cxprcssion of the smear. 
There are two approaches to proceed to higher orders, One is IO 

expand G in pwcr series of E and deal with the canonical transformation 
order by order. After n steps. the Hamiltonian has a perturbation of order 
$+I, The other approach called “superconvergent, “7is to iterate first 
order perturbations but to start fresh after each iteration. After n iterations, 
the perturbation is of the order c?** u. Again, once the invariant surface is 
obtained. the problem is in principle solved. 

Resonances 

The problem with the perturbation method is that the process may 
not converge. The problem is that of small denominators An indication 
has occurred in the expression of the generating function, Eq. (3), which 
diverges when 

m v = integer, (5) 

or equivalently, when v = rational number. Canonical perturbation theory 
therefore breaks down near resonances. An implicit assumption when 
writing down Ey. (3) is therefore that one is “away from alI resonances”. 
The fact that there are resonances arbitrarily close by is presumably 
compensated by the fact that these arbitrarily high order resonances am 
also infinitely weak. In practice, they are therefore simply ignored. 

One does well also in the other extreme, i.e.. when the dynamics are 
dominated by a single isolated resonance, say m.v = integer. In that cast, 
we could try at least to remove the 0 dependence to first order in E, yielding 

H = H,(J) + E. V(J) cos (m.4) + O(E~) (6) 

The bold quantities v, m, and J represent vector in multi-dimensional 
case. One constant of the motion is H itself, In 1-D case, this assures 
integrability. Whether the motion is hounded or not depends on the 
topology of the H contours, as shown in Fig. 2. 

where f means above and below transition, respectively. The change of 
sign above transition is a consequence of the negative longitudinal mass. 
Above transition, motion is therefore bounded near sum resonances and 
unbounded near difference resonances9 

In the 3-D case near a resonance mxvx+myvy+m,v, = integer, 
Hamilton’s equation gives J,‘/mx=Jy’/my = 5.Js’/ms. It follows that 
unbounded motion occurs when 

* all mx. my and m, are of the same sign if Mow transition 
- m, and my are of the same sign, mS has opposite sign if above 

transition. (9) 

All other sign combinations give bounded motion. It should be 
pointed out, however, that bounded motion does not necessarily mean 
stability in practice. This is because the a small decrease in one dimension 
may allow the other dimension to grow by a large amount, thus exceeding 
the aperture. This is especially the case when longituclmal dimension is 
involved. 

It was pointed out that the canonical perturbation theory is just a 
perturbative way to solve the Hamilton-Jacobi equation, so why not try to 
solve it directly numerically rather than perturbatively. This leads to the 
Hamilton-Jacobi equation for G($, JI, 0), 

Ho(J,+&/&$) + V(& J,+c?G/&, 8) + dG/& 

= function of J1 alone, i.e., new Hamiltonian H1(J1) (l(i) 

The job is to solve for G using the above nonlinear partial differen- 
tial equation. The condition is that the m-th Fourier component of the left 
hand side of Eq. (10) vanish for all nonzero m. In practice, the Fourier 
expansion is of course tcrminatcd by a truncation. Note that the task is not 
as formidable as it might seem due to the fact that Jl is an invariant and acts 
as an input parameter. The direct solution of the H-J equation seems to 
offer a promising approach to realistic nonlinear accelerator problems. 

Figure 3 is the result of applying this technique to a simple example 
of an integrable Hamiltonian that describe a single isolated 4-th order 
resonance. Separatrices can not be calculated due to small denominators. 
But by appmching the seprvatrix. one obtains Fig. 3(a), which can be 
compared with the Hamiltonian contours, Fig. 3(b). obtained from the 
exact analytical expression. 
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Fig. 3. (a) Contour ohtajned by directly solving of’thc Hamilton-Jacobi 
equation. (h) Contours using exact analytic cxpreusion. 
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An indispensable tool for studying nonlinear dynamics in acceler- 
ators is to simulate particle motion by tracking. Typically, one first models 
the accelerator lattice, chooses the initial conditions of the particles, and 
then tracks the trajectory of these particles by a computer code. 

The difficult job of preparing a tracking code is not so much of 
developing the code itself. Rather it is to decide on the tradeoff between 
computing speed and the degree of simplification of the lattice model. The 
decision of course depends on the envisioned purpose of the tracking code. 
For storage ring applications, practically all tracking &es assume 
drastically simplified models of one type or another: ignoring fringe fields. 
kick approximation for nonlinear elements, simplified Hamiltonian, 
concatenated maps to represent the dynamics for one revolution, etc. 
Other than some detailed featuP% these simplifications are mostly accept- 
able, and in any case necessary for applications to large storage rings 
and/or to study long term effects. 

The full expression of the Hamiltonian is” 

x2 X Hz;+,- 1+ p 4 ( 1 
e*s (1+.6)2 - x’2 - y’2 + p,c - f- 

0 
(11) 

with canonical variables (x. x’, y, y’, z, z’) and 6 related to z’ by (1+6)2 = 
l-2 z’@,+ 2’2. 

Even in the absence of nonlinear elements (e.g., sextupoles), 
Eq. (11) shows that there are nonlinear terms due to kinematics. How- 
ever, for large storage rings, they are often ignored by expanding the 
square mot in power series and keep up to second order in x’ and y’. All 
nonlinearities thencomc from A,. This gives a simplified Hamiltonian 

12 + 32 
H=*- 6+1-z’ drift 

PO 

- 6x/p + x2Rp2 sector bends 

+ eAsPoc other elements (12) 

In particular, thick bends is treated as a linear element using Eq. (12). 
Equation (12) is adopted by most tracking codes. An alternative 

approach, adopted for example by EAFOT,12 is to model all beam line 
elements (including bends) as thin lenses. This allows keeping the exact 
Hamiltonian [Eq. (1 I)] because it is needed only in drift spaces. 

Explicit Canonical IntegXiOn11,‘3 

Thin lens approximation to a given element, linear or nonlinear, is 
the lowest order (in clement length) approximation. To impmve the accu- 
racy for a thick lens magnet of length L and integrated strength LS, one 
way is to split the element into a number of evenly spaced slices, But 
faster convergence can be obtained with canonical integration techniques. 
For example, 

model 

G) (SC 

error 

OG21 

(k) (F) I.’ repeated n times 

(&) (%) (k) ,.. repeatedn times 

CL]) c$L) (L2) GgJ &I c$L) 0-q) 

where (L) means a drift of length L, (SL) means a thin tens element whose 
integrated strength is SL, Ll=L/2(2-h), L.2=L(l-b)/2(2-b), Sl=S/(2-b), 
S2= Sb/(2-b), b,~Zl/~. Note that the more pieces the element is broken into, 
the higher the precision is. Also note that symmetry always gives One order 

higher than otherwise. Armed with the canonical integration technique (of 
which thin lens approximation is one example), a thick nonlinear element 
(with the exceptions of fringe fields and undulators) can be modeled. 

d Lie Maps 14,15,16 

The beam dynamics between two positions in an accelerator can be 
represented by the map between these two positions Q%iss analysis is an 
example in the linear case). One special cast of such maps is that rcprc- 
sensing one complete turn of the accelerator. Several beam dynamics 
quGantitics can be extracted from this one-turn map: t unc shifts wi!h 
betatron amplitudes and momentum, smear as a function of amplitudes, 
distortion functions, strengths of nonlinear resonances, etc. Thus the one- 
turn map is ideal for various analytical studies of the nonlinear dynamics of 
the accelerator. In addition, it also offers the possibility to perform rast 
particle tracking because the entire accelerator is now modellcd as a single 
map. This later possibility, however, has to be taken with care. 

There are two common appmaches to obtain a one-turn map. One is 
to use the generating function obtained in the canonical perturbation theory 
or the direct solution of the Hamilton-Jacobi equation, as discussed before 
(but with slightly different boundary conditions). The other way, which is 
discussed next, is to represent the map by power series. For example, the 
final coordinate of a particle can be written as a Taylor series in terms of the 
initial coordinates. This will be referred to as a Taylor map. Another 
example is to represent the map as a Lie operator exp(:F:), where F is 
written as a powerseries. Example pmgrams using Taylor maps are 
TRANSM3RT17 and COSY!8. An ex,ample using Lie maps is M.J%RYI.IE.~~ 

The Taylor and Lit maps an: in principle equivalent ,and they can be 
transformed into each other whenever desirable. However, there are prac- 
tical differences. The advantage of a Taylor map is that it is easy to obtain 
in a code-just keep substituting the exit coordinates into the entrance 
coordinates of the next beam line element and truncate the final expression 
to the order of interest. (This is especially tme when Eq. (12) is used as 
the Hamiltonian and the elements are represented as kicks using canonical 
integration techniques). Also, it is easy to apply in panicle tracking. 

The transformation of a thick element with Hamiltonian H is simply 
exp(-:HL:) in the Lie representation. But concatenation of two elements is 
not as straightforward as the Taylor method. An advantage of Lie repre- 
sentation is that it is more concise. The number of coefficients needed to 
represent an n-th order map in a m-dimensional phase space is less than the 
corresponding number in a Taylor map: 

Taylor maps: 
n=l 

m=2 4 
4 16 
6 36 

n=2 n=3 n=4 n=5 
10 18 28 40 
56 136 276 500 

162 498 1254 2766 

Lit maps: 
n=l n=2 n=3 n=4 n=S 

m=2 3 7 12 18 2.5 
4 10 30 65 121 20s 
6 21 77 23 0 455 911 

Formally, Lie representation is automatically symplcctic. However, 
in actual tracking applications, artificial symplectification has to bc applied 
even in a Lie environment. Another important advantage of the Lie repre- 
sentation is that the One-Nm map is obtained in the Lie format is ideal for 
analysis purposes. 

Judging from the above comparison between the Taylor and the Lie 
representations, it seems that a practical, efficient method would be a 
hybrid combination of these techniques: 

l adopt the canonical integration for beam line elements, 
. use kick code to generate the Taylor map for one turn. 
l transform the Taylor map into a Lie map, 
. analyze with the Lie map, (13) 
. when judged appicablc, track with the symplectified Taylor map. 

The larger storage space needed for the Taylor map coefficients is not 
regarded as serious in this approach. This hybrid approach is being 
adopted for the SSC shidics. 



The above scheme is greatly enhanced by the existence of an effi- 
cient technique, based on differential algebra, that generates the one-turn 
Taylor map. To describe this technique, first consider a tracking (or ray 
tracing) program hat starts with initial condition (x0, xlo) and follows the 
particle through bram line elements (or integration slcps) as fnllows 

231 

(X0> x ;, + (“,’ x1) --+ -4 (X~ x,, (14) 

element 1 element 2 element N 

The same steps are followed in the differential algebra approach. 
The only difference is that the initial Xo is now taken to be a set of 
numbers arranged in a vector form (1.0, 0, ,.,, 0) and XL is now (0, 1, 
0, ,.., 0). (-4 capitalized letter means vector here.) The number of entries 
in the vector depends on the desired order of the map. To go through ele- 
ment 1, these vectors are suhstituted into the same expressions as the 
tracking program. Rules are defined for the various operations (addition, 
multiplication, square mot, sine, cosine, etc.) on the vector numbers. 
After going throught element I, one obtains X1 aqd X1, whose entries arc 
now no longer O’s and 1’s. The vccLors X1 and X1 am tbcn substituted 
into expressions for element 2, and the procedure continues until the end of 
beam line, or end of ray tracing steps. 

Miraculously, after this process, the numbers in the final XN and 
XN vectors have the significance as shown below: 

x, = (a~~x,,ax~x]l,a~,/ax%,a2x,/;ixgxn. a2x,kq, . ..) 

X; = (a~axo,3x~x~,a2x~~.a2x~axo;ht~,a~x~h./ax/2, . ..) (15) 

where the derivatives are evaluated at the origin (or the closed orbit). The 
algebra dots not require numerical differentiation involving subtracting 
numbers that are almost equal and thus all derivatives an: accurate to 
computer accuracy. Once the derivatives are obtained, the Taylor map 
follows. By keeping more entries in the vector, maps of arbitrarily high 
orders can be obtained. This is by far the most efficient way of generating 
maps. An exaggerated example, the map for a 90° bend up to 50th order, 
is given be10w:~~ 

order 

0 O.oooOoOE+W 
4 -.625000M1 
8 -.954861Ero2 

12 -_ 17.5964EC-02 
16 -. 120357EG-03 
20 -.748015E-OS 
24 -.340812Eo6 
28 -. 133936Fs-07 
32 -.454204E-O9 
36 -.135272%10 
40 -.365251%12 
44 -.891832&14 
48 -.201106%15 

(XIX’“) order (XIX’“) 

1 0.500000 
6 -.312SOOE-o1 

10 -.43836815-02 
14 -.49447OE-03 
1x -.303507E-04 
22 -.166065Fo5 
26 -.682165&07 
30 -.252307E-Q8 
34 -.792470~10 
38 -.225391&l 1 
42 -576846E13 
46 -.135248E14 
50 -.293181E-16 

Note that the differential algebra tool has been developed for 6-D 
phase space. (Dimensions >6 have been implemented to include dcpen- 
dence of the map on external parameters such as the strength of a particular 
nonlinear clement.) Equation (15) is the special case for 2-D. Note also 
this tool itself does not constitute a program; it is 10 he attached to an 
existing tracking or ray tracing program, precompiled, and it will then 
generate the map corresponding to the case being simulated. Finally, the 
elements do not have to be magnet multipoles. For example, a beam-beam 
kick could be treated as one of the elements. 

Experiments have heen carried out in accelerators to study nonlinear 
dynamics in the past, and more recently at SpS,21,22 SPEAR,23 and 
Tevatron.24 Here we will briefly mention a recent formal clxprimem at the 
Tevatmn, the Experiment E778.25*26,27 

In a typical E778 run, a heam is first injected at 150 GeV. A set of 
16 intentional sextuples are tumcd on, and at the flat top of the sextuple 
strength, the beam is kicked horizontally. The subsequent motion of the 
beam is then monitored by two beam position monitors approximately 90” 
out of phase. Polarities of the sextupoles are such that ideally no net 
change of chromaticities occur. The (xl, x2) information turn after turn 
can be transformed into a normalized phase space. When sextupoles are 
turned off, the trajectory traces out a circle, as shown in Fig. 4(a). When 
sextupoles are tumed on, the circle is distorted (in this case into a 
triangular shape), as shown in Fig. 4(b). The percentage distortion gives 
the smear at the amplitude corresponding to the strength of the kick. 

Figure 5 is a compilation of the results of several such runs. It 
shows the smear as a function of sextupole strength for 3 kick amplitudes. 
The smear increases with sextupole strength, as well as the kick amplituti:, 
as one would expect. The solid lines are obtained by tracking simulation 
The agreement with experimental data is quite reasorMle. 

The phase space actually has a richer structure than Fig. 4 might 
suggest. For example, when tune is close to 2/S, a chain of five islands is 
formed in the phase space. Figure 6 shows the detailed phase space 
obtained by tracking. Both the triangular and the five-island structures ar 
prcsenl. When the beam is kicked to an amplitude so as to overlap one of 
the islands, part of the beam will be locked onto the isLand and will exhibit 
the island structure in its sulssequent motion. Figure 7 is an observation in 
E778 which dramatically demonstrates this behavior. This is a dramatic 
direct observation of the existence of islands in a nonlinear dynamical 
system. 

ClX + dx’ 

1 

/ 
.I 

t)) 

Fig. 4. Experimenal observation of beam trajectory in normalized phase 
space at the Tevatron. (a) Experimenal sextupoles are turned off. 
(b) Trajectory is distorted when 8 sextupoles are turned on. The 
tune is near l/3. The triangle is the calculated separatrix. 
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Fig. 5. Smear versus sextupole strength in E778 for three kicker 
strengths (in kV unitq). Solid lines are simulation results. 
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Fig. 6. Detailed phase space structure obtained by tracking when 
sextupoles are set to 25 amperes. 
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Fig. 7, When the tune is near 2/5. the kicked beam exhibits a five-island 
structure in the (x t , x2) space. 
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