RHIC operational status and upgrade plans

Wolfram Fischer

Thanks to many at BNL.

European Particle Accelerator Conference, Edinburgh 27 June 2006

Outline

1. Status

- Achieved performance
- Performance limits
- 2. Upgrades
 - Enhanced Design parameters
 - Electron Beam Ion Source (EBIS)
 - RHIC II (electron cooling)
 - eRHIC

Relativistic Heavy Ion Collider

• 2 superconducting rings

- 3.8 km length
- operation since 2000
- 5 experiments so far, test QCD
- only operating ion collider (up to gold 100 GeV/n) only operating polarized proton collider

RHIC running modes

 Au-Au
 10, 28, 31, 65, <u>100</u> GeV/n

 d-Au
 <u>100</u> GeV/n

 Important control experiment in physics program

 Cu-Cu
 11, 31, <u>100</u> GeV/n

 polarized p-p
 11, 31, <u>100</u>, 205, 250 GeV

Some modes only for days – fast machine setup essential.

RHIC delivered luminosity

Delivered luminosity increased by 2 orders of magnitude in 5 years.

Delivered to PHENIX, one of RHIC's high-luminosity experiments.

Hadron collider luminosities

Show nucleon-pair luminosity for ions: $\mathcal{L}_{NN}(t) = A_1 A_2 \mathcal{L}(t)$ (can compare different ion species, including protons)

Wolfram Fischer

6

Calendar time in store after setup

____ goal 100h/week

Rest of the time:

- ~20% machine tuning/ramping
- ~15% failures

F. Pilat et al., THPCH197

~10% machine development and accelerator physics experiments

Performance limit: IBS for heavy ions

Beam and luminosity lifetime for Au – Au dominated by IBS

[Factor 10 between Au an p]

• Debunching requires continuous abort gap cleaning

- Luminosity lifetime requires frequent refills
- Ultimately need cooling at full energy

Recently demonstrated longitudinal stochastic cooling in bunch of 2×10⁹ protons at 100 GeV (~1% of normal p intensity, ~ normal Au intensity)

Performance limit: transition crossing Crossing transition with slowly ramping sc. Magnets (all ions except protons)

- → Instability limits bunch intensities for ions (~1.5 2.0×10¹¹ e)
 → Instability is fast (τ =15 ms), transverse, single bunch (electron clouds can lower stability threshold)
- γ_t -jump implemented
- Octupoles near transition
- Chromaticity control (need ξ-jump for higher bunch intensities)

Performance limit: dynamic pressure rise

Dynamic pressure rise caused by electron clouds Upgraded warm and cold vacuum system:

- installed 430m of NEG pipes (~700m warm sections)
- reduced pressure in cold section to 1e-7 Torr before cool-down

Dynamic pressure currently not a concern in operation

Performance limit: polarization of protons

BRAHMS \rightarrow used to avoid depolarizing RHIC resonances Spin rotators PHENIX **RHIC** helical STAR magnet High intensity H source EBIS Polarized H source BOOSTER AGS snakes AGS Polarimeters Tandems Ion source

> Superconducting helical magnet in AGS – most complex magnet ever built by Superconducting Magnet Division

Performance limit: polarization of protons

First operational use of AGS cold snake in 2006

 $\rightarrow 85\%$

 $\rightarrow 65\%$

- Raised AGS polarization from 60% to 65%
- Removed intensity dependence of polarization

Polarization by machine

- Source
- AGS extraction
- RHIC store
 - 100 GeV (no loss) $\rightarrow 65\%$
 - 205 GeV (in 2005) $\rightarrow 30\%$
 - 250 GeV (yesterday!) $\rightarrow 47\%$

M. Bai et al., PRL 96 174801 (2006).

Blue only, current record energy for p^{\uparrow}

H. Huang et al. MOPCH100

- Total beam-beam induced tune spread reached $\Delta Q_{bb,tot} = 0.012$
- Other sources of tune spread: $\Delta Q \approx 0.005$
 - nonlinear chromaticity (correction planned for next year)
 - triplet errors (locally corrected)
- Sources for orbit and tune modulation

RHIC upgrades

Upgrade goals

- More luminosity and polarization
- More flexibility and reliability

Four main upgrades planned:

- 1. Enhanced Design parameters
- 2. Electron Beam Ion Source (EBIS)
- 3. RHIC II (electron cooling)
- 4. eRHIC

Upgrade 1: Enhanced Design (~2008*)							
Parameter	unit	Achieved	Enhance	d			
			design				
Au-Au operation							
Energy	GeV/n	100	100				
No of bunches		45	111				
Bunch intensity	10 ⁹	1.1	1.0				
$\Delta verage \rho$	10260m-2s-1	5	ο				
Average ~		3	Ō	← 1.0×			
$p\uparrow - p\uparrow operation$	iu ciii s	5	ð	Should be possible			
p↑- p↑ operation Energy	GeV	5 100	250	Should be possible in next Au-Au run			
p↑- p↑ operation Energy No of bunches	GeV 	5 100 111	0 250 111	Should be possible in next Au-Au run			
p1-p1 operation Energy No of bunches Bunch intensity	GeV 10 ¹¹	5 100 111 1.4	o 250 111 2.0	Should be possible in next Au-Au run			
$p\uparrow$ - $p\uparrow$ $operation$ EnergyNo of bunchesBunch intensityAverage \mathcal{L}	GeV 10 ¹¹ 10 ³⁰ cm ⁻² s ⁻¹	5 100 111 1.4 20	 250 111 2.0 150 	Should be possible in next Au-Au run			

* First 250 GeV p¹-p¹ physics run currently scheduled for 2009. BROOKHAVEN Wolfram Fischer

17

Upgrade 1: Enhanced Design (~2008)

Upgrade 2: Electron Beam Ion Source (EBIS)

- Current ion pre-injector: upgraded Model MP Tandem (electrostatic)
- Plan to replace with: <u>Electron Beam Ion Source</u>, RFQ, and short linac

→ Can avoid reliability upgrade of Tandem
→ Expect improved reliability at lower cost
→ New species: U, ³He[↑]

Upgrade 2: Electron Beam Ion Source (EBIS)

Upgrade 2: Electron Beam Ion Source (2009)

. .

Schematic of RHIC EBIS

Electron gun HV feedthr	Superconducting Electron solenoid Drift tubes oughs Cryop	collector agnet coil ate valve pump	Electron collector	
國和於甲	quantity	unit	RHIC	Test EBIS
			EBIS	achieved
	e-beam current	А	10	10
Electron gun	e-beam energy	keV	20	20
magnet coil J Buffer	ion trap length	m	1.5	0.7
chamber /	trap charge capacity	10^{11}	11	5.1
Insulating HV platform	charge yield (Au)	10^{11}	5.5 (10 A)	3.4 (8 A)
mannannannan	pulse length	$\mu {f s}$	≤ 40	20
	yield Au ³²⁺	10	3.4	> 1.5

Test EBIS of ¹/₂ length achieved ¹/₂ of required yield, yield scales with trap length

Parameter	unit	Enhanced design	RHIC II			
<u>Au-Au operation</u>						
Energy	GeV/n	100	100			
No of bunches		111	111			
Bunch intensity	10 ⁹	1.0	1.0			
Average <i>L</i>	10 ²⁶ cm ⁻² s ⁻¹	8	70 - 9×			
p↑- p↑ operation						
Energy	GeV	250	250			
No of bunches		111	111			
Bunch intensity	1011	2.0	2.0			
Average <i>L</i>	$10^{30} \text{cm}^{-2} \text{s}^{-1}$	150	500 - 3×			
Polarization <i>9</i>	%	70	70			

Use non-magnetized cooling (no solenoidal field)

(demonstrated with 8.9 GeV antiprotons in Fermilab Recycler – Nagaitsev et al.)

For 100 GeV Au beams need:

- 54 MeV electron beam
- 5nC per bunch
- rms emittance $< 4 \,\mu m$

I. Ben-Zvi et al. TUZBPA01

→ 2.7 MW beam power
→ need Energy Recovery Linac (ERL)

Upgrade 3: RHIC II – electron cooling (\geq 2012) **IR12** beam dum e-cooling **Cooling section:** 110m long, $\beta_{x,y} \approx 400$ m PHENIX **STAR** D. Trbojevic et al. MOPCH102 EBIS BOOSTER AGS LINAC Wolfram Fischer

Simulated luminosities (A. Fedotov) 100 with cooling Luminosity [10²⁶cm⁻²s⁻¹] 75 50 25 without cooling 0 +3 2 0 Time [h]

For:

- Beam-loss only from burn-off (luminosity)
- Constant emittance (cooling)

$$\mathcal{L}(t) = \frac{\mathcal{L}(0)}{\left(1 + t \,/\, \tau\right)^2}$$

 $\rightarrow \tau \approx 5$ h for Au-Au Store length limited by burn-off

Upgrade 4: $eRHIC (\geq 2014)$

Main features:

- High-luminosity electron-ion collider
 - 10^{32} -10³⁴cm⁻²s⁻¹ for e⁺-p⁺
 - 10^{30} - 10^{32} cm⁻²s⁻¹ for e⁺-A(⁺)
- 30-100 GeV center-of-mass energy
- Longitudinally polarized electrons, protons, possibly light ions

V. Ptitsyn et al. MOPLS058

- Currently working on
 - Ring-ring option (B-factory like e-ring)
 - Linac-ring option (higher luminosity potential)

27

Upgrade 4: $eRHIC (\geq 2014)$

Upgrade 4: eRHIC (≥ 2014)

Major R&D items:

beam dump

- electron accelerator (ring or linac)
- high intensity polarized electron gun
- interaction region optimization
- beam dynamics problems (beam-beam, electron clouds)

e-cooling

Summary RHIC

Status:

- Since 2000, 4 ion combinations, 8 energies
- Luminosity/year increased by 2 orders of magnitude
- Protons with 65% polarization at 100 GeV

Planned upgrades:

- 1. Enhanced Design parameters (~2008)
- 2. EBIS (modern pre-injector, U and ${}^{3}H^{\uparrow} 2009$)
- 3. RHIC II (order of magnitude increase in Au-Au $\mathcal{L} = \geq 2012$)
 - (high luminosity electron-ion collider ≥ 2014)

4.

eRHIC