FFAG Accelerators and Their Applications

Yoshiharu Mori Kyoto University, Research Reactor Institute (KURRI)

Contents

Introduction

History of development

FFAG: Fixed Field Alternating Gradient

- Strong focusing (AG focusing, phase focusing)
 - It is like synchrotron.
 - Orbit excursion
 - It is like cynclotron, but not much.
 - Free from betatron resonances
 - Fixed tunes(constant phase advance/turn) :Scaling FFAG Zero-chromaticity -fields are non-linear-
 - Fast resonance crossing : Non-scaling FFAG Linear optics
 - Beam acceleration
 - Variable frequency : like synchrotron
 - Fixed frequency : like cyclotron

Advantages of FFAG

Fast acceleration

- DC magnetic field allows the beam acceleration only by RF pattern. No needs of synchronization between RF and magnets.
- High intensity with large repetition rate and modest number of particles in the ring
 - Space charge and collective effects are below threshold.
- Large acceptance
 - Transverse (hor.)>10,000mm.mrad
 - Longitudinal dp/p>10%

FFAG Accelerators Hisotry

- 🍚 Ohkawa (1953), Kerst & Symon, Kolomenski
 - MURA project e-model, induction acceleration ~'60s
- No practical machine for 50years!
 - Complicated magetic field configuration : 3D design
 - RF cavity :Variable Frequency & High Gradient.

Proton FFAG! (world first) ----> Pop FFAG @KEK,1999

History of FFAG Proton Accelerator

1953: Basic concept by Ohkawa

Proton FFAG accelerator was not successful until recent

 →difficulty in fabricating RF cavity with variable frequency & high gradient field
 1998: Development of RF cavity using Magnetic Alloy

Grant-in-Aid for Scientific Res. by MEXT: Y. Mori, KEK

2000: Demonstration of Proton FFAG Accelerator -POP FFAG-

Grant-in-Aid for Scientific Res. by MEXT: Y. Mori, KEK

WORLD's FIRST PROTON FFAG!

2004 : Development of 150MeV multipurpose FFAG accelerator

100Hz Operation! Grant-in-Aid for Creative Basic Res.: Y.Mori

Proof-of-Principle (PoP)-Proton FFAG

150MeV multipurpose proton FFAG

International Workshop on FFAG Accelerator

WORKSHOP

Air	l 3th nos	FFAG06 (Nov. 2006) t twice per year!	KURRI One the most active fields in
	l2th	FFAG2006 (May 2006)	BNL
	llth	FFAG05 (Dec. 2005)	KURRI I 50MeV FFAG 100Hz
	10th	FFAG workshop(Apr. 2005)	FNAL 150MeV FFAG extraction
	9 th	FFAG04 (Oct. 2004)	KEK I50MeV FFAG acceleration
	8th	FFAG workshop (Mar. 2004)	TRIUMF
	7th	FFAG workshop (Sept. 2003)	BNL
	6th	FFAG03 (July 2003)	KEK
	5th	FFAG workshop (Sept. 2002)	LBL
	4th	FFAG02 (Feb. 2002)	KEK 150MeV FFAG approved
	3rd	FFAG00 (Oct. 2000)	KEK
	2nd	FFAG workshop (July 2000)	CERN
	lst	FFAG99 (Dec. 1999)	KEK PoP-FFAG first beam!

accelerator physics and technology.

Transverse Beam Focusing

Scaling FFAG

Fixed tunes : non-linear magnetic fields

Zero-chromaticity

demonstrated - PoP-FFAG(KEK).

Non-scaling FFAG

Unfixed tunes : linear beam optics

Fast resonance crossing

not demonstrated.

Scaling FFAG

Original idea ---> Ohkawa (1953)

"Zero chromaticity"

betatron eq. $x'' + g_x x = 0$; $g_x = \frac{K^2}{K^2}(1-n)$ $z'' + g_z z = 0$; $g_z = \frac{K^2}{K^2} n$ field index geometrical $\frac{\partial}{\partial p} \left(\frac{K}{K_0} \right) \bigg|_{\theta = const.} = 0 \qquad \frac{\partial n}{\partial p} \bigg|_{\theta = const.} = 0$ orbit similarity no p-dependence $B(r,\theta) = B_i \left(\frac{r_i}{r}\right)^{r_0} F\left(\theta - \zeta \ln \frac{r}{r}\right)$

radial sector negative bend FODO(DFDO)

spiral sector edge focus FFDO

AG focusing

Magnetic Field in scaling FFAG

Dynamic Aperture of Scaling FFAG

cf. A>10,000mm.mrad for phase advance of ~90degree/cell

 $=\frac{1}{k+1}$: momentum compaction factor

Momentum Comapction: no higher orders ----- momentum acceptance : large ----- kinematic effects : small enough

Non-scaling FFAG

Solution: Fields are linear: B,Q fields. Tunes are varied: Fast resonance crossing

Acceleration

- Variable frequency
- Constant frequency

Acceleration(RF)

Variable frequency RF

Broad-band RF cavity : Scaling & Non-scaling

MA(magnetic alloy) cavity Q~I

Fixed frequency RF

- Stationary RF bucket acceleration : Scaling relativistic beam & constant MC
- Gutter RF acceleration : Non-scaling

relativisitc beam & small MC(parabolic) :semi-isochronous

Harmonic number jump acceleration : Scaling (non-scaling) non-zero slippage factor

Variable RF frequency

- Broad-band RF cavity : MA(magnetic alloy) cavity
 - Fast acceleration requires fast frequency(phase) change. Low Q is essentianl !
 - Adequate both for scaling and non-scaling FFAGs.

Fixed RF frequency(I)

Stationary RF bucket acceleration

- Constant & small enough phase slip --- Large energy gain relativistic beam constant Momentum Compaction $\eta = \frac{1}{\gamma^2} - \alpha \cong -\alpha = -\frac{1}{k+1}$
- Adequate for scaling FFAG

0.5

Fixed RF frequency(2)

Fixed RF frequency(3)

Harmoic number jump acceleration

Time slip/turn: m x Trf

m:integer, m<0: before transition, m>0: after transition

Energy gain/turn should be tuned.

$$h(E) = \frac{mE\beta^3 \Delta E}{\eta}$$

cf. A.Ruggiero(BNL)

Applications

- Proton driver
- Muon accelerator
- Medical application

Proton driver

Neutrino factory

- Muon source (pulsed)
- Energy:5-20GeV, Power: 4MW, Rep.rate:10Hz, Bunch width:1nsec
- Accelerator driven nuclear system (ADS)
 - Neutron source (cw/semi-cw)
 - Energy: I-2GeV, Power:>I0MW, cw/semi-cw(kHz)

Proton driver for neutrino factory

Intensive design works

Non-scaling FFAG by A.G.Ruggiero (BNL)

E=11.6GeV (two rings)

Lattice: O-BF-BD-BF-O, MC=linear for momentum

Harmonic number jump acceleration

Semi-scaling(achromatic) FFAG by G.Rees(Rutherford Lab.)

E=10GeV, 50Hz

Lattice:O-bd-BF-BD-BF-bd-Q including non-linear bd

variable frequency RF acceleration

Tune variations & orbit excursion

Semi-scaling(achromatic) FFAG by G.Rees(Rutherford Lab.)

NFFAG and IFFAG Lattice Cells

- Cells have the arrangement: O-bd-BF-BD-BF-bd-O.
- NFFAG: non-isochronous ; $\xi_v = 0, \ \xi_h = 0.$
- IFFAG: isochronous $(\gamma_t = \gamma)$; $\xi_v = 0$, $\xi_h = +ve$.
- NFFAGI and IFFAGI have normal & insertion cells.
- Different length straights in normal & insertion cells.
- There is closed orbit matching between single cells.

Proton driver for ADS

Design work

Non-scaling FFAG: A.G.Ruggiero (BNL)

IGeV, I0MW (single ring)

- Development for basic ADS study
 - Scaling FFAGs at Kyoto University(KURRI)
 - I50MeV, I (100) micro-A (two rings)
 - Combined experiment with KUCA(sub-critical reactor)

Feasibility Study on ADSR Using FFAG Accelerator

Five-year project (US\$~10M in total)

supported by

MEXT Technology Development Project for Innovative Nuclear Energy System

Accelerator Development

Development of variable energy FFAG accelerator with high acceleration efficiency

Neutronics of Subcritical Core

Energy-dependent neutronics of subcritical core coupled with variable energy FFAG accelerator

Research Reactor Institute Kyoto University

FFAG complex at KURRI

EPAC06, June 26-30, 2006, Edinburgh

Muon accelerator

PRISM project

Logitudinal phase space rotation to obtain small energy spread

p~20MeV/c, Energy spread <2%

Scaling FFAG & MA RF cavity(250kV/m)

Muon accelerator for neutrino factory

Scaling FFAG(NuFact-J) ~ 20(50GeV)

Stationary RF bucket acceleration

Non-scaling FFAG

Gutter RF acceleration cf. Electron model :EMMA

PRISM project

Development at Osaka Univ. (2003-2007)

Phase Rotation Simulation: Horizontal Phase Space

Medical application

Hadron beam therapy

- Development of multipurpose FFAG (KEK) 2001-2005 Scaling FFAG & MA RF cavity
- Fast spot scanning synchronized respiration 100Hz operation demonstrated !
- BNCT (boron neutron capture therapy)
 - Intense low energy(epi-thermal) neutron source flux at patient >10E09 n/cm2/sec
 - FFAG-ERIT(energy/emittance recovery internal target) ionization cooling

Schematic view mulitpurpose FFAG

No. of sectors
Field index(k -value)
Energy
Repetition rate
Max. Magnetic field
Focus-mag.
Defocus-mag.
Closed orbit radius
Betatron tune
Horizontal :
Vertical :
rf frequency

12 7.5 12MeV - 150MeV 250Hz

1.63 Tesla
0.13 Tesla
4.4m -5.3m

3.7 1.2 1.5 -4.6MHz

Fast spot scanning exeriments & simulations

呼吸同期に対応するスキャンニング照射

multipurpose FFAG with 100Hz operation

Neutron Source for BNCT

Requirements

- Large neutron flux
 |x|0⁹ n/cm²/sec at patient
- Low energy spectrum thermal/epi-thermal neutron

Nuclear reactor only can provide these neutrons.

Limited to extend the use of BNCT widely in society.

Accelerator based Neutron Source

In order to obatin $\phi > 10^9$ n/cm2/s

- Neutron production
 - Reaction 9Be(p,n)B, 7Li(p,n)Be
 - energy ~10MeV
 - target thickness ~10micron
 - Neutron yield ~1/10000 n/p
- Proton beam current ~40mA

Accelerator based neutron source : Difficluties

Accelerator

energy is low, but required beam current is very large I > 10mA (CW)

technically hard and expensive

🖉 Target

thin target t<0.1mm ...dE/dx~50MeV/g/cm2 beam power is relatively large > 100kW difficult cooling and shorter lifetime

Radiation

full beam dumping for 100kW beam huge shielding and large gamma-ray contamination

Neutron Source with FFAG-ERIT

Emittance-energy Recovery Internal Target (ref. Nucl. Instr. Meth.)

Ionization Cooling

$$\frac{d\varepsilon}{ds} = A\varepsilon + B \qquad \qquad \varepsilon: \text{ beam emittance}$$

transverse

$$A = -\frac{1}{\beta^2 E} \left\{ \frac{dE}{ds} \right\} \qquad B = \frac{\beta \gamma}{2} \beta_T \frac{\left(13.6 MeV\right)^2}{\left(\beta cp\right)^2 L_s}$$

Ratherford mulitple scattering

$$B = 4\pi \left(r_e m_e c^2 \right)^2 n_e \gamma \left[1 - \frac{\beta^2}{2} \right]$$

straggling

3D beam cooling becomes possible if transverse and longitudinal motions are coupled.

分配関数の和>0

$$\sum_{1}^{3} g_i > 0$$

cf. proton beam 10MeV Be target

Transverse→Cooling Longitudinal→Heating

longitudinal A = 2 -

ERIT ionization cooling

Temperature rise of Be target

heat load **500W** beam distr. **Gauss (3**σ: **5.64cm)**

radiation $\propto T^4$ ANSYS max. temperature ~634°K

BNT with FFAG-ERIT

Injector(RFQ + IHDTL)

Summary

Basic Features and their applications of FFAG accelerators are presented.

Types of FFAG

Scaling

Non-scaling

Acceleration

Applications

Proton driver

Muon accelerator

Medical applications ERIT for BNCT

FFAG has large potentials for various applications !