Global & Local Coupling Measurements

@RHIC

Rama Calaga (BNL), Rogelio Tomás (CERN) Andrea Franchi (GSI)

EPAC - June 29th, 2006

- Entree:
 - RHIC Intro
 - Existing techniques (Global & Local Correction)
- Main Course:
 - $|\overline{C}|$ & $f_{\scriptscriptstyle 1001}^{\scriptscriptstyle 1001}$ ightarrow Baseline Measurements
 - IR Scan: Correction Strategy
 - Analysis (Fitting, AC dipole effects, vertical dispersion)
- Dessert:
 - Global Coupling Correction & Optimization
 - Fast Global Correction

RHIC & BPM System

- Collide
 - $Au^{+79}-Au^{+79} 100 \text{ GeV/n}$
 - p⁺-p⁺ 100 GeV, 250 GeV
- Beam position monitors
 - 72 dual-plane (IR's)
 - 176 single-plane (Arcs)

Data Acquisition

Transverse Kickers

AC Dipoles

Global Coupling & Correction

Resonance Condition:

$$Q_x \pm Q_y = n$$

- Closest tune approach (manual scan)
- N-Turn Map correction (W. Fischer)
- Amp. and angle modulation (Y. Luo)

Local Coupling

Matrix Approach:

$$\mathbf{T} = \begin{pmatrix} \mathbf{M} & \mathbf{m} \\ \mathbf{n} & \mathbf{N} \end{pmatrix} = \mathbf{V}\mathbf{U}\mathbf{V}^{-1}$$
$$\mathbf{U} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{pmatrix} , \quad \mathbf{V} = \begin{pmatrix} \gamma \mathbf{I} & \mathbf{C} \\ -\mathbf{C}^{+} & \gamma \mathbf{I} \end{pmatrix}$$

Hamiltonian Perturbation Approach:

$$f(s)_{rac{1}{1010}}=-rac{1}{4\left[1-e^{2\pi i (Q_x\mp Q_y)}
ight]}\sum_l k_l\sqrt{eta_x^leta_y^l}e^{i(\Delta\phi_x^{sl}\mp\Delta\phi_y^{sl})}$$

Equivalence Relations:

$$f_{1001}_{1010} = \frac{1}{4\gamma} (\pm \overline{C}_{12} - \overline{C}_{21} + i\overline{C}_{11} \pm i\overline{C}_{22})$$
$$\frac{|\overline{C}|}{4\gamma^2} = |f_{1001}|^2 - |f_{1010}|^2$$

R. Calaga, A. Franchi, R. Tomás, Phys. Rev. ST Accel. Beams 8, 034001 (2005)

Propogation of $|\overline{C}|$

No Skew Quads:

$$\overline{C}_2 = \mathbf{R}_x(\phi_x) \ \overline{C}_1 \ \mathbf{R}_y^{-1}(\phi_y)$$
$$|\overline{C}_2| = |\overline{C}_1| \qquad |\mathbf{R}_x| = |\mathbf{R}_y| = 1$$

Thro' Skew Quad:

$$\overline{C}_2 = \overline{C}_1 - \overline{k}$$

$$\bar{k} = -\frac{|C^{(2)}| - |C^{(1)}|}{C_{12}^{skew}}$$

- Total 12 correctors (3 families 4 correctors each)
- Correctors in approx. phase with triplets
- Goal: Correct each IR locally

- Possible correction strategy by scanning IR skew correctors
- Minimize both local excursions and average value
- Identify slopes
 - AC Dipole artifacts
 - Quadrupole tilts
 - Vertical offsets in sextupoles

No slopes visible due to large δQ (~ 0.01) AC dipole artifacts can be excluded !

Fitting Model to Data

Fitting Variables:

- Discontinuity visible at the bump location
- Slopes AMPLIFY with vertical offset through sextupoles
- Sources of the slopes remain unclear

*** Fit dispersion to coupling sources or compare for diff. corr. settings

All settings of the form (F1– Δ ,F2+ Δ , F3+ Δ) have the same ΔQ_{min}

RHIC Model

Global coupling compensated ($\Delta Q_{min} = 1 \times 10^{-3}$)

The numbers in brackets are strengths of the families $(10^{-5}m^{-1})$.

Coupling Vector: $\mathbf{C} = |C|e^{i\Theta}$

$$\mathbf{C} = -\frac{1}{2\pi} \oint ds \ k(s) \sqrt{\beta_x(s)\beta_y(s)} e^{-i(\phi_x(s) - \phi_y(s) + \frac{s}{R\Delta})}$$
$$C| = \Delta Q_{min}, \ \Delta = Q_x - Q_y \}$$

$$|C| \simeq 4|\Delta| \langle |f_{1001}| \rangle + O(\Delta)$$

$$\Theta \simeq \frac{1}{N} \sum_{i}^{N} [q^{i} - (\phi_{x}^{i} - \phi_{y}^{i}) + \pi [1 - \frac{1}{2} sgn(\Delta)]$$

 $\{|C| < \Delta \ll 1, f_{1001} = |f_{1001}|e^{iq}\}$

{|

$\langle f_{1001} \rangle$	Δ	$ C _{fast}$	$ C _{old methods}$
0.02 ± 0.008	0.013	1.1 ± 0.4	1.6
0.05 ± 0.009	0.048	$10~\pm~1.7$	10
0.025 ± 0.009	0.039	4 ± 1	3.1
0.03 ± 0.009	0.041	4.9 ± 1	4.4
0.04 ± 0.01	0.03	4.8 ± 1	4.4

Yesterday's Poster WEPCH064 (Andrea Franchi et al.)

Conclusions

- Many formalisms, techniques, and observables exist
- f_{1001}_{1010} and $|\mathbf{C}|$ are very useful observables
- Extensive measurements of the RHIC during Run 2005
 - Limitation due to faulty and noisy BPMs
 - Slopes observed in arc regions
- Local corrector scan useful to re-optimize current settings
- Fitting model to measurments: Insightful
 - Quadrupole rolls give approx. good result
 - Sextupole offsets and dispersion fitting still in progress
- Also use $f_{\scriptscriptstyle 1001}_{\scriptscriptstyle 1010}$ & $|{f C}|$
 - Fast global decoupling
 - Re-optimize global coupling

Ack: S. Abeytunge, M. Bai, W. Fischer, T.Satogata, C. X. Wang

Extra Slides

IR Scan Contd.

