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Abstract

Inter-strand coupling currents (ISCCs) contribute to field
errors and losses in Rutherford-type superconducting ca-
bles in the time-transient regime. A field change induces
eddy currents in loops formed by the superconducting
twisted strands and the resistive matrix. The implemen-
tation of ISCC models in ROXIE allows to combine ISCC
calculations with models for persistent currents and inter-
filament coupling currents. Saturation effects in iron can
be taken into account as well. The predictions of differ-
ent ISCC models with regard to losses and field errors are
compared for two design versions of the LHC main dipole.

INTRODUCTION

The two layers of transposed strands in Rutherford type
cables are forming loops in which eddy currents can be
induced by time-transient fields, e.g., during the ramping
of magnets. These so-called inter-strand coupling currents
(ISCCs) are responsible for additional heat losses and mag-
netic field errors. The ability to predict ISCCs is especially
important in the context of fast-ramping superconducting
synchrotron facilities, e.g., the FAIR project at GSI, Ger-
many.

A network model for the calculation of ISCCs based on
work by Devred and Ogitsu [1] has been implemented in
the ROXIE program [2]. In this model, contact resistances
between strands can be assumed as being constant or with
random fluctuations along the cable. The network model
with lumped elements is solved using mesh analysis based
on matrix algebra. Spatial periodic boundary conditions
can be applied in order to model an infinitely long cable.
The calculations presented in this paper are steady-state
calculations, although the model is equally suited to per-
form transient calculations and predict time-constants.

In this paper we introduce the ability of the CERN
ROXIE program [5] to perform ISCC analysis during an in-
tegrated design process of superconducting magnets. The
ISCC effects can be studied with non-linear iron-yoke
magnetization, persistent-current magnetization and inter-
filament coupling current effects, simultaneously. We com-
pare the results of the network model in ROXIE with results
of a stand-alone network code by A. Verweij [3], and with
an equivalent-cable-magnetization model by M. N. Wilson
[4].

THE NETWORK MODEL

We represent the Rutherford-type superconducting cable
as a lumped-element network model. The strands are repre-
sented by perfectly conductive thin wires and the adjacent-

and cross-over-resistances by lumped resistive elements,
compare Fig. 1.

Figure 1: A typical current loop in a cable with 10 strands.
The current is driven by a field sweep ∂tBy . Adjacent re-
sistances are displayed in yellow and cross-over resistances
in red.

The field-sweep as a driving force is represented in the
network model by voltage sources. Each branch b j has a
source defined by

{US}j =
∫

bj

∂tAS · tbj dl,

with the source magnetic vector potential AS and the
branch tangent-vector tbj . As a consequence we have to
solve the following steady-state linear equation system:

{U} = [R]{I} + {US}, (1)

where {U}, {I}, {US} ∈ R
Nb represent branch voltages,

-currents, and -sources, and [R] = [G]−1 = diag
(

1
gj

)
∈

R
Nb×Nb is the resistance matrix. Nb denotes the number

of branches and Nn will denote the number of nodes.
With the branch-node incidence matrix [A] ∈ R

Nn×Nb ,
which is defined by

aij :=

⎧⎨
⎩

1 if branch j exits from node i,
−1 if branch j enters in node i,
0 otherwise,

we write the first law of Kirchhoff (current law) in matrix
form [A]{I} = 0, and the potential formulation of the elec-
tric voltage {U} = [A]T{ϕ}. Consequently we find

{ϕ} =
(
[A][G][A]T

)−1 [G]{US}.

The problem with this formulation lies in the near-zero
conductivity of superconducting strands which renders an
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inversion of the conductivity matrix [G] impossible. We
therefore adopt a method which uses a mesh-branch inci-
dence matrix [M] ∈ R

Nm×Nb : For topological considera-
tions we divide the network into a spanning tree of Nn − 1
branches and its complement co-tree. We find that there
are as many linearly independent meshes or loops in the
network as there are co-tree branches, Nm = Nb−Nn +1.
Each elementary mesh contains one, and only one, co-tree
branch, which defines the mesh orientation. The mesh-
branch incidence matrix is defined by

mij :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if branch j belongs to mesh i
with same orientation,

−1 if branch j belongs to mesh i
with opposite orientation,

0 otherwise.

Kirchhoff’s voltage law can be written in matrix form
[M]{U} = 0. We express the branch currents as a lin-
ear superposition of so-called mesh currents {IM} ∈ R

Nm

by {I} = [M]T{IM} and obtain from Eq. 1

{IM} = −
(
[M][R][M]T

)−1 [M]{US}.

In order to simulate an infinitely long cable, we set up
the network equations for only one band of length l b, com-
pare Fig. 1. Periodic boundary conditions are applied to the
resulting linear equation system. Calculations for the LHC
main dipole are shown in Fig. 2.

EQUIVALENT-MAGNETIZATION MODEL

The equivalent-magnetization model for ISCCs repre-
sents the main loops in the network model that contribute
to ISCCs. It consists of three vectorial contributions, [4]:

M⊥
c =

1
120

∂tB
⊥

Rc
lp Ns(Ns − 1)

w

b
e⊥,

M⊥
a =

1
3

∂tB
⊥

Ra
lp

w

b
e⊥,

M‖
a =

1
8

∂tB
‖

Ra
lp

b

w
e‖,

where M⊥
c is the magnetization due to currents in the

cross-over resistances induced by a field perpendicular to
the broad side of the conductor, M⊥

a is the magnetization
due to currents in the adjacent resistances from a perpen-
dicular field, and M‖

a is the magnetization due to currents
in the adjacent resistances from a parallel field. The cable
twist-pitch length lp features in the equations as well as the
cable width w, the cable height b, the number of strands N s,
and the cross-over- and the adjacent-resistance Rc and Ra.
Figure 3 shows the field distribution due to the equivalent-
magnetization model. We observe that both models, net-
work and equivalent magnetization, predict ISCC-fields in
the aperture that contribute to the exciting field, an effect
that is known as ”field advance” due to ISCCs.

Figure 2: Top: Magnetic flux density in the cross-section
of the LHC main dipole. Bottom: ISCCs in steady-state
condition at ∂tBcentral = 0.094Ts−1. Icons represent the
magnetic flux density generated by ISCCs. Note that the
icons in both plots are not to scale.

COMPARISON OF MODELS

Both models, the network model and the equivalent-
magnetization model for ISCCs, have been implemented
in ROXIE. This allows for a combined simulation of IS-
CCs and other effects. For a verification we compare the
ROXIE results to a network-model by A. Verweij [3]. The
Verweij code has been used to determine cross-over and ad-
jacent resistances in LHC pre-series dipoles from measured
field quality and losses.

In [6] we find data on the ISCCs’ impact on field-quality.
In [3], page 153, we find loss calculations. Both docu-
ments present calculations of the so-called ”White-Book”-
and ”Pink-Book”-dipoles. The naming refers to two LHC
design reports and, thus, two different design stages of the
LHC main dipoles.

Tables 1, 2, and 3 summarize the results. We find that the
network models agree within a few percent. The difference
is due to a slightly different implementation of the adjacent
resistances on the cables’ narrow edges. The equivalent-
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Figure 3: Equivalent cable magnetization from ISCCs.
Icons represent the magnetic flux density generated by
ISCCs, compare the field pattern outside the coil cross-
section in Fig. 2.

magnetization model generally yields lower estimates for
ISCCs. The reason for this lies in the simplicity of the
model, and in the averaging of the field-sweep over a cable-
width in the computation of the equivalent cable magneti-
zation. This averaging implies that for cables which are
exposed to a field with opposite direction over the cable
cross-section (compare the outer layer in upper picture of
Fig. 2) the model predicts too small magnetization values.
The problem is more severe for 1-layer coils. The effect
might be remedied by averaging the field over parts of the
cable cross-section only.

Table 1: Pink-book dipole: ISCC influence on the rela-
tive field harmonics (in units 10−4 at a reference radius of
10 mm) at a center field of 0.58 T. The field increases at a
rate of 0.00667 T/s (8 T in 1200 s). We use Rc = 1 μΩ and
Ra = 10 mΩ.

ROXIE ROXIE Verweij
Equiv.-Magn. Network Model Network Model

n Δbn Δbn Δbn

1 -86.15 -95.28 -97.6
3 3.41 3.88 3.11
5 -0.31 -0.21 -0.32
7 -0.01 0.01 0.00
9 0.01 0.01 0.01

CONCLUSIONS

We have shown that the models for inter-strand coupling
currents which have been implemented in the ROXIE pro-
gram yield predictions that are consistent with prior work
on the topic carried out at CERN. We can therefore pro-

Table 2: White-book dipole: ISCC influence on the rela-
tive field harmonics (in units 10−4 at a reference radius of
10 mm) at a center field of 0.58 T. The field increases at a
rate of 0.00667 T/s (8 T in 1200 s). We use Rc = 1 μΩ,
Ra = 10 mΩ.

ROXIE ROXIE Verweij
Equiv.-Magn. Network Model Network Model

n Δbn Δbn Δbn

1 -73.23 -75.82 -77.2
3 1.92 2.22 2.11
5 -0.09 -0.05 -0.07
7 -0.01 -0.01 -0.01
9 0.0 0.00 0.00

Table 3: Losses in joule/meter for a field sweep between
0.6 and 8.4 T with a ramp rate of 0.00667 T/s for the pink-
book dipole (PBD) and a white-book dipole (WBD). We
use Rc = 2 μΩ and Ra = 10 mΩ.

ROXIE ROXIE Verweij
Equiv.-Magn. Network M. Network M.

PBD 74.39 88.82 85.0
WBD 91.31 105.1 105

ceed to use the models in combination with other ROXIE
features such as non-linear iron-yoke magnetization, super-
conductor magnetization, inter-filament coupling currents,
etc.
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