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Abstract

It is important to have symplectic maps for the various
electromagnetic elements in an accelerator ring. For some
tracking problems we must consider elements which evolve
during a ramp. Rather than performing a computationally
intensive numerical integration for every turn, it should be
possible to integrate the trajectory for a few sets of param-
eters, and then interpolate the transport map as a function
of one or more parameters, such as energy. We present
two methods for interpolation of symplectic matrices as a
function of parameters: one method is based on the cal-
culation of a representation in terms of a basis of group
generators[2, 3] and the other is based on the related but
simpler symplectification method of Healy[1]. Both algo-
rithms guarantee a symplectic result.

METHOD I: GROUP GENERATORS

As a starting point, consider a relativistic Hamiltonian[5,
6, 7] written in terms of conjugate coordinates and mo-
menta:

H = −Pz = H(x, Px, y, Py, ct,−U ; s) (1)

= −qAs −
(

1 +
x

ρ

)

×
√(

U−qφ
c

)2

− (mc)2 − (Px − qAx)2 − (Py − qAy)2.

This Hamiltonian may be expanded about the design tra-
jectory in a Taylor series:

H =H0 +
6∑

j=1

BjXj +
6∑

j=1

6∑
k=1

(1 − 1
2δjk)CjkXjXk

+O(X3), with (2)

XT =(Δx, ΔPx, Δy, ΔPy, Δz,−ΔU). (3)

Note that the second derivatives from the quadratic terms
form a symmetric matrix with Cjk = Ckj .

Hamilton’s equations may be written in the form[7]

dXj

dt
= −

∑
k

Sjk
∂H

∂Xk
(4)
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with the group metric chosen to be the usual

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Converting Hamilton’s equations into a set of infinitesimal
difference equations yields

Xn+1 = [I− SCΔt]Xn, where (6)

Cjk =
∂H

∂Xj∂Xk
= Cjk. (7)

Eq. 4 becomes

dX
dt

= GX where Gik = −
6∑

j=1

Sij
∂H

∂Xj∂Xk
. (8)

Here we have expanded about an actual trajectory rather
than the design orbit, so the linear Bj terms drop out. Be-
cause of the symmetry of C, the matrix G still only has
21 free parameters for a 6×6 symplectic matrix. It is also
worth noting that the trace of G is zero as expected for
any Lie group, and additionally that the three traces of the
2×2-blocks along the diagonal are also each independently
zero.

For the case of static magnetic fields with no rf fields we
may take

φ = 0 and
∂ �A

∂t
= 0. (9)

Then the eleven elements (six free parameters) with fives
in the subscripts of Cij are identically zero, and we are left
with only fifteen free parameters. An infinitesimal differ-
ence equation for the trajectory in terms of the linear matrix
G is formed by

X(s0 + Δs) = [I + G(s0)Δs]X(s0). (10)

If G is constant over some range s ∈ [s0, s1], then the
trajectory may be easily integrated as

X(s) = lim
n→∞

(
I + G s−s0

n

)n = eG(s−s0). (11)

Conversely, any symplectic matrix M in this representation
may be written in the form

M = eG = e−SC, (12)

where C is a symmetric matrix as above.
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By taking the logarithm of the matrices[8] to be interpo-
lated, we end up with only 15 independent parameters (21
for the general 6×6-case) which must be interpolated. So
a series of 6×6 transport matrices Mi(�vi) may be interpo-
lated as a function of the parameters �v by first calculating
the set matrices

Li = −S log[Mi(�vi)], (13)

to obtain the Cjk(�vi). The 15 (or 21) functions Cjk(�vi) are
then interpolated to the desired value v̂. For example a fit
to some appropriate functions (polynomials for example)
may be made. Finally the desired transport matrix is then
calculated via exponentiation[9]:

M(v̂) = e−SC(v̂). (14)

METHOD II: HEALY’S ALGORITHM

Provided that the transport matrices Mi(�vi) do not have
any eigenvalues which are equal to −1 (See Ref. 5.), then
a symmetric matrix may be calculated from the symplectic
transport matrices:

Vi(�vi) = S[I−Mi(�vi)][I + Mi(�vi)]−1. (15)

For this new symmetric 6× 6 matrix, there are again 21
independent elements; however another six are identically
zero as before for static magnetic fields. These elements
Vjk may be interpolated as for the Cjk , and then the desired
M(v̂) may be found by the inversion formula

M(v̂) = [I + SV(v̂)][I− SV(v̂)]−1. (16)

The symmetric matrices V and C of the two methods are
related by the equation

V = S tanh(SC). (17)

FORM OF MATRICES WITHOUT
TIME-DEPENDENT FIELDS OR

ELECTRIC POTENTIAL

For the case with φ = 0 and ∂ �A/∂t = 0 (i. e. static
magnets), the general linear transport matrix obtained from
a Hamiltonian of the form of Eq. 1 is

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

X X X X 0 X
X X X X 0 X
X X X X 0 X
X X X X 0 X
X X X X 1 X
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (18)

where the X’s are place holders for unknown values. It is
clear that the product of two matrices with this form yields
another matrix of the same form. In other words, the sym-
plectic matrices with zeros and ones as given in Eq. 4 form

a subgroup of the symplectic group Sp(6,r). The G of Eq. 2
will be similar with all 11 of the elements in the fifth col-
umn and last row being zero. (The matrix M− I has zeros
in the same row and column.)

Since a general transformation from s0 to s1 may be ob-
tained as a restricted canonical transformation (see § 3.4 of
Ref. [7]), a general transport matrix should have the same
form as for an infinitesimal step. It also follows that from
the Hamilton’s equation:

d(−U)
d(ct)

= − ∂H

∂(ct)
= 0 (19)

at each step along the beam line, all eleven of the C ij with
a 5 for either of the indices will be zero. The integration
along the finite beam line is then of the form

M = [I− SC(s0) ds][I− SC(s0 + ds) ds] · · · (20)

× [I− SC(s1 − ds) ds, ] (21)

where in general the C(s) will evolve along the beam line
but still always have the same general form with zeros in
the fifth row and column. The resulting transport matrix
will be the sum of the identity matrix plus products of the
various SC(s) products which always have zeros in the
fifth column and last row. If we then take the logarithm
of this transport matrix then the resulting G will also have
zeros in the fifth column and last row.

In the case of the symmetric V of Method II, since V is
related to the C by Eq. 3 and the hyperbolic tangent may be
expanded in a Taylor series, we find that the fifth column
and last row of V must also contain zeros.

Because a numerical calculation of the second partial
derivatives for M from integration of trajectories through
a magnet may yield errors in some elements in the fifth
column and last row, one might be tempted to set these el-
ements to the correct zero and one values given in Eq. 4.
A better correction might be to first calculate either of the
symmetric matrices C or V and then to set the fifth column
and last row elements identically to zero before inverting
the corrected symmetric matrix via the appropriate method
to reconstruct the new symplectified transport matrix.

INTERPOLATION OF MATRICES

While the Cayley-Hamilton Theorem[10] could be ap-
plied with the characteristic equation for each 6× 6 ma-
trix to find a closed solution requiring only multiples of the
matrix up to the 5th power in evaluating the logarithm or
exponential of the matrix, for this numerical example, it is
much simpler to use the brute force expansions:

logM = log[I + (M− I)] =
∞∑

n=1

(−1)n−1

n
(M− I)n,

(22)

M = eG = I +
∞∑

n=1

1
n!

Gn. (23)
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It should be noted in particular that the expansion for the
logarithm is not absolutely convergent; however for the
typical matrices such as those from integration through he-
lical dipoles of snake magnets, these series do converge
quickly with a fast computer. To test the algorithms we
used a set of matrices calculated for different energies
by tracking particles through a model of a helical partial
Siberian snake magnet[11] in the AGS. A solenoid was
added inside the central region of the helix to minimize the
coupling along the trajectory near the spin intrinsic reso-
nance at Gγ = Qv. For the logarithm, we summed over
the first 99 terms of the series (gross overkill), and for the
exponential series only the first 19 terms were calculated.
Clearly a more careful algorithm could be devised to test
for the desired convergence thus minimizing the multipli-
cation of matrices, however this was unnecessary for the
present study. If this method were used inside a tracking
code to interpolate matrices, then a careful optimization of
the code should be performed. However, method II using
Healy’s algorithm is simpler to calculate and gives essen-
tially the same results as method I with the group genera-
tors.

It should be noted that in a helical snake the diagonal
blocks for x and y,

(
M11 M12

M21 M22

)
and

(
M33 M34

M43 M44

)
(24)

respectively, scale reasonably well with (βγ)−2 as ex-
pected from a simple consideration of the transverse mag-
netic field components. The off-diagonal blocks (cou-
pling terms) and dispersion terms, however show a con-
siderable deviation from this simple scaling as would be
expected with the extra solenoid superimposed inside the
middle of the helical dipole. The amount of the coupling
in the resultant matrices were estimated by the determi-
nant |m + SnTST| in terms of the x-y off-diagonal 2×2-
blocks[12, 13, 4]

n=
(

M13 M14

M23 M24

)
, and m=

(
M31 M32

M41 M42

)
. (25)

Curves for both V and C components were fit to poly-
nomials up to 8th-order: The polynomials used for fitting
were

Cij(ζ) =
8∑

n=0

Cij,nζn, and Vij(ζ) =
8∑

n=0

Vij,nζn,

(26)

where
ζ = (βγ)−2aij . (27)

The aij was set to 1 for most coefficients, but was set to 0.7
for some elements to improve the fitting to 8th order poly-
nomials by decreasing the slope of the data at low values of
(βγ)−2, otherwise a higher order polynomial would have
been necessary.

SUMMARY

Both these methods work quite well, although the sec-
ond method is simpler in that it only requires matrix inver-
sion rather than exponentiation and taking the logarithm of
matrices. It should be noted that the matrix logarithms are
only required to determine the constants of the interpola-
tions formulae for the Cjk(vi); then only exponentiation
of SC would be required for tracking. Since both meth-
ods reduce the symplectic matrix to a symmetric matrix,
the same number of interpolation formulae are required for
each method. Both these methods automatically guaran-
tee symplectic results without any additional pass through
a symplectification algorithm.
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