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Abstract

Linear coupling in a storage ring is conveniently ana-
lyzed in terms of transformations that put the single-turn
map into block-diagonal form. Such a transformation al-
lows us to define new variables, in which the dynamics are
uncoupled. In principle, a similar approach may be taken
to nonlinear coupling; we discuss such an approach in this
paper, giving some simple illustrations of the ideas, based
on the well-known techniques of normal form analysis.

INTRODUCTION

Coupling between dynamical degrees of freedom in ac-
celerator beamlines arises from many sources, for exam-
ple, from the tilt of normal quadrupoles around the beam
axis, or from a vertical offset of the beam in a sextupole.
The presence of coupling complicates the description of
the dynamics. For example, consider the phase space pic-
ture drawn by a particle making multiple turns through a
storage ring. If the motion is uncoupled, the phase space
coordinates of the particle in any plane lie on a smooth el-
lipse; the area of each ellipse corresponds to a conserved
quantity of the motion. The existence of such conserved
quantities in symplectic systems is an expression of Liou-
ville’s theorem. With coupling, the ellipses become irreg-
ular, and the conserved quantities no longer correspond to
simple geometric quantities. The dynamics may be sim-
plified by making a coordinate transformation in which the
motion becomes uncoupled. Symplecticity is preserved if
the coordinate transformation is canonical. If the motion
is fully decoupled by the transformation, the phase space
trajectory of a particle describes a smooth ellipse in each
plane as before, and the conserved quantities required by
Liouville’s theorem again correspond to the areas of the el-
lipses.

In the case of linear coupling, it is well known how to
find a canonical tranformation to new coordinates in which
the motion is uncoupled. For nonlinear coupling, the ques-
tion is a little more complicated, and new features are in-
troduced. In this paper, we consider the use of Lie algebra
methods for constructing decoupling transformations in the
linear and nonlinear cases. The results provide some in-
sight into the nature of the dynamics in systems with non-
linear coupling.
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LINEAR COUPLING

Consider a linear map given in the form of a Lie trans-
formation [1]:

M = exp(: xTm̄x :) (1)

where m̄ is a symmetric matrix (we use a bar to indicate
a matrix that appears in the generator of a Lie transforma-
tion), and the components of the vector x are the phase
space variables. In n degrees of freedom, m̄ is a 2n × 2n
matrix. The motion described by M is coupled if m̄ has
components outside the 2 × 2 block-diagonals: a decou-
pling transformation is one that removes the off block-
diagonal components of m̄.

A linear canonical transformation F can be written in
Lie operator form as:

F · x = exp(: xTf̄x :) · x = f x (2)

where f is a matrix. Under F , M → M̃ where:

M̃ = F ·M ·F−1 = exp(:F ·xTm̄x :) = exp(:xTf Tm̄ f x :)
(3)

To decouple the motion, we need to find a matrix f that di-
agonalizes m̄. Such a matrix can be constructed from the
eigenvectors of Sm̄, where S is the usual 2n×2n antisym-
metric matrix with block-diagonals:

S2 =
(

0 1
−1 0

)
(4)

Let e1 be the matrix of the eigenvectors of Sm̄, ordered
and normalized so that:

eT
1Se1 = iS (5)

Then f can be written:

f = e1T (6)

where T is a block-diagonal matrix constructed from:

T2 =
1√
2

(
i 1
i −1

)
(7)

The generator f̄ of F can be written:

f̄ =
1
2
Se2 (lnΛ) e−1

2 (8)

where e2 is the matrix of the eigenvectors of f , and (lnΛ)
is a diagonal matrix whose components are the logarithms
of the eigenvalues of f .
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If the original map in matrix form is given by m:

M · x = mx (9)

then under the action of F , m transforms as:

m → m̃ = f−1mf (10)

and f−1mf is block diagonal: it is the decoupled map.
Fig. 1 shows the results of “tracking” 1000 turns, using

a map representing a coupled linear lattice. The points ob-
tained by applying the coupled map are plotted in black;
the same points, after applying a linear decoupling trans-
formation, are plotted in red. As expected, the decoupling
transformation completely eliminates the scatter.
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Figure 1: Linear decoupling.

NONLINEAR COUPLING

The linear analysis presented above generalizes to the
nonlinear case. For convenience, we now work in action-
angle rather than cartesian variables. As a first step, we
normalize the map, in the sense that we eliminate any de-
pendence on the angle variables. In general, coupling terms
involving only the action variables remain. We will show
how to complete the decoupling transformation by remov-
ing these terms using time-dependent generating functions.

Techniques for constructing a transformation to remove
dependencies of a nonlinear map on the angle variables are
familiar from normal-form theory [2]. As an example, con-
sider the map:

M = R · exp (: m̄2 :) (11)

where R is a linear rotation, and

m̄2 = JxJye2iφxe2iφy (12)

In general, the linear part of the map represented by R may
include coupling; however, the linear map may be decou-
pled using the techniques of the previous section. To ad-
dress the nonlinear part, we apply a canonical transforma-
tion F2 that is second-order in the action variables:

M → M̃ = F2 ·M · F−1
2 (13)

where

M̃ = R ·R−1 · F2 ·R · exp (: m̄2 :) · F−1
2

= R · exp
(
: R−1f̄2 :

) · exp (: m̄2 :) · exp
(
: −f̄2 :

)
= R · exp (: m̄′

2 + O(3) :) (14)

where f̄2 is the generator of the transformation F2, and

m̄′
2 = R−1f̄2 + JxJye2iφxe2iφy − f̄2 (15)

To eliminate the second-order term (in other words, to set
m̄′

2 = 0), the generator f̄2 must satisfy:
(
1−R−1

)
f̄2 = JxJye2iφxe2iφy (16)

or:

f̄2 =
JxJye2iφxe2iφy

1− e−2iθxe−2iθy
(17)

where θx and θy are the rotation angles in R.
In eliminating the unwanted second-order terms, we in-

troduce additional third-order (and higher) terms. How-
ever, any terms not invariant under rotations may be re-
moved by applying the same procedure. Assuming con-
vergence (which may not necessarily occur, particularly in
regions where the motion appears chaotic), the normaliza-
tion proceeds order-by-order until the desired accuracy is
achieved.

Nonlinear Decoupling of Hamiltonians

Clearly, terms in the generator that are invariant under
rotations cannot be removed by the above procedure: cou-
pling terms such as JxJy may remain. To find a means of
eliminating these terms, let us consider the analogous sit-
uation in Hamiltonian dynamics; this has been treated by
Schräpel [3]. We will take as the Hamiltonian:

H = μxJx + μyJy + κJxJy (18)

The independent variable will be t, which does not appear
explicitly in the Hamiltonian. We now write down a gener-
ating function of the second kind [4]:

F2 = φxJ̃x + φyJ̃y − κJ̃xJ̃yt (19)

where J̃x and J̃y are the new action variables. Note the
explicit appearance of t in the generating function. The old
action variables are given in terms of the new variables by:

Jx(y) =
∂F2

∂φx(y)
= J̃x(y) (20)

and the new angle variables are given by:

φ̃x(y) =
∂F2

∂J̃x(y)

= φx(y) − κJ̃y(x)t = φx(y) − κJy(x)t

(21)
The transformation takes us into a rotating frame of refer-
ence, in which the rate of rotation in either plane depends
on the action in other plane. The transformed Hamiltonian
H̃ is given by:

H̃ = H +
∂F2

∂t
= μxJ̃x + μyJ̃y (22)

In the new variables, the motion is uncoupled: we have
achieved our goal by means of a generating function in
which the independent variable t appears explicitly.
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Nonlinear Decoupling of Maps

We now return to the case of a map with nonlinear cou-
pling. We assume that we have decoupled the linear part,
and normalized the nonlinear part so that it contains terms
only in Jx and Jy . As an explicit example, consider:

M = R · exp (: κJxJy :) (23)

The nonlinear part cannot be decoupled using a time-
independent canonical transformation; however, let us con-
sider a time-dependent canonical transformation, F (t).
Under the map M and under the transformation F (t), the
variables transform as follows:

Jt+1 = M · Jt (24)

J̃t = F (t) · Jt (25)

It follows that under F (t), M transforms as:

M → M̃ = F (t + 1) ·M · F−1(t) (26)

An appropriate form for the generating function is:

F (t) = exp (: −κJxJyt :) (27)

in which case the fully decoupled map is simply:

M̃ = R (28)

Numerical Example

We consider a map of the form:

M = R · exp [: κJxJy cos(2φx + 2φy) :] (29)

The normalizing transformation (to second order) has the
form F2 = exp

(
: f̄2 :

)
where

f̄2 =
1
2
κJxJy

sin (θx + θy + 2φx + 2φy)
sin (θx + θy)

(30)

The transformed map is:

M̃ = R · exp (: m̄′
3 + O(4) :) (31)

where, from the Baker-Campbell-Hausdorff formula, the
third order generator term m̄′

3 is given by:

m̄′
3 =

1
4
κ2JxJy (Jx + Jy)

sin [2 (θx + θy)]
sin (θx + θy)2

(32)

Observe that m̄′
3 is invariant under rotations, so it must be

removed using a time-dependent transformation, with gen-
erator:

f̄3(t) = −m̄′
3t (33)

The results of tracking 25 turns (with κ = 0.85, and lin-
ear rotation angles θx = 100◦ and θy = 65◦) are shown in
Fig. 2. The blue and black points show the results of apply-
ing the map M to particles with two different initial ver-
tical amplitudes. The second-order time-independent nor-
malization reduces the scatter observed in the full nonlinear

map; the symplectic condition is now evident as Liouville’s
theorem applied in each plane, with the conserved quanti-
ties corresponding to the areas of the ellipses. However, the
motion is still coupled since the horizontal phase advance
depends on the vertical amplitude (and vice-versa). After
a third-order time-dependent normalization, the phase ad-
vance in each plane is independent of the amplitude in the
other plane: the motion is almost fully decoupled.
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Figure 2: Nonlinear decoupling. Top: nonlinear map. Mid-
dle: map normalized using second-order time-independent
canoncical transformation. Bottom: map further normal-
ized using third-order time-dependent canonical transfor-
mation.

ACKNOWLEDGEMENT

Thanks to Ina Reichel for translating Ref. [3] for us.

REFERENCES

[1] A. Dragt, “Lie Maps,” in “Handbook of Accelerator Physics
and Engineering,” A.W. Chao and M. Tigner (editors), World
Scientific (1999) 76-82.

[2] E. Forest, “Beam Dynamics: A New Attitude and Frame-
work,” Harwood Academic Publishers (1998), 149-163.
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