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Abstract

Because of their high repetition rate and large apertures,
FFAGs are proposed for high-current medical accelerators
suitable for cancer therapy. The linear-field nonscaling
FFAG is made from repeating cells containing D and F
combined function magnets. The F and D elements are
horizontally focusing and defocusing, respectively. The be-
tatron tune profiles decrease with momentum; this leads to
the crossing of resonances, possibly leading to emittance
increase. We examine how sextapole magnets may be used
to flatten the tune profile; in particular (i) whether it is bet-
ter to place them at the D or F; (ii) what strength is re-
quired; and (iii) what is their effect on the closed orbits
and path length? Chromaticity is corrected by coupling fo-
cusing strength to dispersion, which is far stronger in the
F element. The zeros of the orbit dispersion become the
poles of the “sextapole strength to flatten the tune at some
particular momentum”. Consequently, a weak F sextapole
can produce a substantial horizontal tune flattening, and has
little impact on other optical properties. Contrarily, placing
the necessarily strong sextapole at the D element may de-
stroy the dynamic aperture.

INTRODUCTION
To find the closed orbits and path length we follow the

same kick model of the combined-function magnet ele-
ments as reported in Refs. [3, 1]. The same notations are
also adhered to. Throughout, we adopt physical units
wherein the particle charge and speed of light are unity.
To find the tunes we employ power series expansions in
the quadrupole strength as was reported in Ref. [2]. Here
we consider a degenerate F0D0 lattice with equal element
lengths and gradients. Triplet and doublet cells, and split
quadrupole strengths, are studies in the extensive Ref. [4],
from which the brief results reported here are drawn. Here
we study the case of bending at momentum pc purely in the
D, but the general case of bending shared between D and F
is treated Ref. [4].

We shall consider the case of weak sexapoles. The moti-
vation for this is two-fold: (a) strong sextapoles will reduce
the dynamic aperture, and (b) weak sextapoles lend them-
self to a simple pertrubation treatment. The weak sextapole
condition is 2|σ|θl0 � |β|. 2l0θ is roughly the aperture of
the magnet. The condition is essentially that the product
of integrated sextapole strength and aperture be much less
than the integrated quadrupole strength. For simplicity, we
consider a single sextapole per cell placed at D or F ele-
menst, but not both.
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F SEXTAPOLE

The bend angle of a half cell is θ; this is the bend in the
D element at the reference momentum pc. Let primes de-
note derivatives with respect to transverse displacements;
the quadrupole gradient is B ′, and similarly for the sex-
tapole B′′. The integrated strength (gradient×length) of
the half quadrupole elements is β = B ′× l, and their sepa-
rations are l0. We consider a degenerate F0D0 lattice with
equal half quadrupole strengths βd = βf = β. We take
also the element half lengths to be equal, ld = lf = l.
However, we add a sextapole to be superposed at the F ele-
ment. The integrated strength of the half sextapole element
is σf = B′′ × l. The quadrupole and sextapole centres are
coincident. For brevity, we shall denote l0β ≡ p0.

The angular deflections at D and F are, respectively:

(ψd1 + ψd2) = 2[pcθ − βxd]/p (1)

(ψf1 + ψf2) = 2[βxf + σfx2
f ]/p . (2)

The closed-orbit displacements versus momentum are:

xd =
(p− pc)(p− p0)

βp0
θ − σf

[(p− pc)p]2p
(βp0)3

θ2 (3)

xf =
(p− pc)p

βp0
θ − σf

[(p− pc)p]2(p + p0)
(βp0)3

θ2 . (4)

These expressions are not limited to weak sextapoles; they
are exact to order θ2. The introduction of the sextapole
raises the momentum dependence from quadratic to quin-
tic. The path length to order θ3 is:

L(p) = 2l0 + (p− pc)(3p− pc − 2p0)θ2/(βp0)
− 2σf [(p− pc)p]2(2p− pc)θ3/(βp0)3 . (5)

Let the momenta p̌ and p̂ denote the lower and upper ex-
tent of the machine operating range. The basic lattice is
designed in the absence of the sextapole. The focusing
strength is constrained by the condition p0 ≡ l0β ≤ p̌, and
the path length is usually chosen to satisfy L(p̌) = L(p̂).

Incremental Kicks and Focusing

We substitute xd(p) + x and xf (p) + x from (3,4) into
the kick equations (1,2), and recover the terms linear in x:

δψd/x = −2β/p (6)

δψf/x = 2(β/p) + 4(p− pc)/(βp0)(σfθ)
− 4(p− pc)2p(p + p0)/(βp0)3(σfθ)2 . (7)

The analogous deflections in the vertical plane are:

δψd/y = +2β/p δψf/y = −y[β + 2σfxf ]/p , (8)
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Notice, that the subscripts d, f here refer to the same ele-
ments as they do in the horizontal plane; e.g. (δψf )/y is
vertically defocusing. The incremental angular deflections
result in transverse focusing.

Betatron Tunes

Because of the feed-down focusing from the sextapole,
the betatron tunes are split. For brevity, let Sf =
2σfθ/(l0β2). To first order in Sf and the element half
length (l), and to second order in the element separation
(l0), the horizontal phase advance (φx) is given by:

cosφx = 1− 2p2
0

p2
− 2Sf l0

p
(p− pc)(p + p0) + . . .(9)

+l
4
3

[
−4βp0

p2
+

Sf

p2
(p− pc)(p2

0 − 4p0p− 3p2)
]

+ . . .

The vertical phase advance φy is given by Sf → −Sf and
p0 → −p0 only in the terms in Sf .

In the following, we adopt the limit of thin elements and
set l = 0. Notice that the sextapole term has a single zero
(at p = pc) for φx, whereas it has an additional zero (at p =
p0) for φy . This distinction is crucial. While the sextapole
can change the horizontal tune at the low momenta, it has
almost no effect on the vertical tune around l0β ≈ p̌.

Horizontal Tune Profile Flattening

Flattening the tune variation versus momentum is equiv-
alent to flattening cosφx, which is a much simpler function
to deal with. There are a variety of choices which can be
made, in order of increasing sextapole strength:

• tune locally flat at the high momentum p̂
• tune locally flat at the reference momentum pc

• locally flat at the mean momentum p̄ ≡ (p̌ + p̂)/2
• equal at minimum (p̌) and maximum (p̂) momentum

The first 3 conditions require the derivative ∂ cosφx/∂p be
zero at particular values of momentum (p̂, pc, p̄), leading to

σf (p) = β2p2
0/[p(p2 + p0pc)θ] . (10)

Note, σf (p) has no poles except at p = 0, which is
(usually) well outside the machine operation range. The
fourth condition, treated in Ref.[4], requires cosφx(p̌) =
cosφx(p̂) and gives the absolute minimum tune range.

As an example, we take basic lattice parameters l0 =
3 (metre), β = 10.575 (tesla), θ = π/50 (radian), p̌ =
10, p̂ = 20 pc = 17.745 all momenta in (MeV/c). The
longitudinal working point is b = 0.3013.

Figure 1 shows cosφx(p) and the tune profile νx =
φx/(2π) for the five cases σf = 0, 4.24, 5.62, 8.17,
9.81 (T/m), shown red, magenta, green, cyan, blue respec-
tively. The former three values satisfy the weak sextapole
condition, but the latter are marginal.

Influence on vertical tune The cross-talk effect of the
F-sextapole on the (per cell) vertical phase advance φy and
tune νy is shown in Figure 2; there is little effect.

The slight increase of the tune at p̌ is a reason for caution
in selecting σf and the machine base tune.
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Figure 1: cosφx (left) and νx (right) versus momentum for
a variety of F-sextapole strength.
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Figure 2: Tune νy (left) and path length (right) versus mo-
mentum for a variety of F-sextapole strength.

Closed orbits and path length The effects of the F-
sextapole on the closed orbits xd, xf and cell path length L
for a variety of σf are shown in Figs. 3 and 2 It is clear that
the disturbance is a acceptable for all four values σf .
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Figure 3: xd (left) and xf (right) versus momentum for a
variety of F-sextapole strength.

D SEXTAPOLE

We repeat the exercise for the scenario that the sextapole
is placed at the horizontally defocusing element. The an-
gular deflections at D and F, respectively, are:

(ψd1 + ψd2) = 2[pcθ − βxd + σdx
2
d]/p (11)

(ψf1 + ψf2) = 2(βxf )/p . (12)

To first order in the sextapole strength, the off-momentum
closed-orbits at D and F elements:

xd = (p− pc)(p− p0)θ/(βp0) (13)

− σd[(p− pc)(p− p0)]2(p− p0)θ2/(βp0)3

xf = (p− pc)pθ(βp0) (14)

− σd[(p− pc)(p− p0)]2pθ2/(βp0)3 .

The expressions are not limited to weak sextapoles; they
are exact to order θ2. Compared with the case of no sex-
tapole, the momentum dependence has been raised from
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quadratic to quintic. As we shall see later, the triple (in xd)
and double (in xf ) repeated zeros at p = p0 will make the
sextapole spectacularly ineffective. The path length is:

L = 2l0 + (p− pc)(3p− pc − 2p0)θ2/βp0 (15)

+ 2σd[(p− pc)(p− p0)]2(p0 + pc − 2p)θ3/(βp0)3 .

Incremental Kicks and Focusing

After making the substitutions xd → xd(p) + x and
xf → xf (p) + x from (13, 14) into the kick equations
(11, 12), and retaining terms linear in x and σd, we find

δψd/x = −2β/p + 4(p− pc)(p− p0)(σdθ)/(βp0p)(16)

δψf/x = +2β/p . (17)

The angular deflections in the vertical plane are:

δψd/y = +2[β− 2σdxd]/p δψf/y = −2(β/p) . (18)

Betatron Tunes

The weak sextapole limit is the same for σd as it is for
σf . Let Sd ≡ 2σdθ/(l0β2). The vertical phase advance:

cos φy = 1− 2p2
0

p2
+

2Sdl0
p2

(p− pc)(p + p0)(p− p0) + (19)

+l
4

3

[
−4βp0

p2
− Sd

p2
(p− pc)(p

2
0 − 4p0p− 3p2)

(p− p0)

p

]
+ . . .

The horizontal φx is obtained by Sd → −Sd and p0 →
−p0 only in the Sd terms, except for the two final (p− p0).

The terms in Sd have at least two zeros, in which case
the tunes are pinned at their Sd = 0 values at the locations
p = pc and p = l0β irrespective of the actual value of
Sd. Evidently, under that circumstance, it will be difficult
to modify the tune variation unless strong sextapoles are
used; and particularly for φx because of the repeated zero.
Again we shall take the limit of thin elements, l → 0.

Vertical Tune Profile Flattening

Consider now to flatten the tune profile by asking that
the ∂ cosφy/∂p = 0 at some momentum. The solution is

σd(p) = −β2p2
0/[(p3 + p2

0(p− 2pc))θ] . (20)

σd has three poles, but only one is relevant; depending on
parameter choices it lies between p̌ and p̄. Equation (20) is
evaluated at p̂, pc and p̄ resulting in the values σd = −7.3,
−12.1 and −31.7 (T/m) respectively. These are weaker
values than for νy flattening with a F-sextapole, but they
still violate the condition for weak sextapoles. None of
them produces a significant tune flattening. Moreover,
though it it not proven here, it is probable that such strong
sextapoles will severly compromise the dynamic aperture
for betatron oscillations about the reference orbits. The fi-
nal value, which makes the tune double valued, serves only
to increase the rate of tune variation with momentum.

The cases σd = 0,−7.3,−12.1,−31.7 are denoted by
the colours red, blue, green, magenta in Fig. 4.
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Figure 4: cosφy and νy versus momentum for a variety of
D sextapole strength σd.

Influence on horizontal tune The influence on φx, νx

of σd chosen to locally flatten νy is given in Figure 5. The
cross-talk is small, but the range of νx has increased.
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Figure 5: Tune νx (left) and path length (right) versus mo-
mentum for a variety of D sextapole strength σd.

Closed orbits and path length The effect of the ver-
tical tune flattening on xd, xf and L is utterly negligible,
as may be seen from Figure 5. However, there remains the
problem that strong sextapoles are required to effect even
small adjustments to the νy profile.

CONCLUSION
We have demonstrated that a weak F-sextapole pro-

duces a substantial flattening of the horizontal tune profile.
Though a D-sextapole is more effective in flattening verti-
cal tune, the sextapole strength for even small flattening is
strong and may have severe impact on dynamic aperture.

Lattices with reverse dipole bending When the bend-
ing at pc is shared (θ = θd + θf ) between D and F, this
introduces an extra zero, at p = −p0θf/θ ≡ −pf , into the
Sf part of cosφx. At pf , the F-sextapole cannot change the
tune. If θf < 0, then the zero is shifted toward p > 0 and
a stronger σf is required. The expressions for cosφ with
a D-sextapole differ from the θf = 0 case by (p − p0) →
(p − p0θd/θ) for one of the zeros which is moved slightly
higher into the machine range and a stronger σd is required.
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