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Abstract 
With cooling, beam phase space density increases, 

which makes the beam motion intrinsically unstable. To 
suppress instabilities, dampers are required. With a 
progress of digital technology, digital dampers are getting 
to be more and more preferable. Conversion of an analog 
signal into digital one is described by a linear operator 
with explicit time dependence. Thus, the analog-digital 
converter (ADC) does not preserve a signal frequency. 
Instead, a monochromatic input signal is transformed into 
a mixture of all possible frequencies, combining the input 
one with multiples of the sampling frequency. Stability 
analysis has to include a cross-talk between all these 
combined frequencies. In this paper, we are analyzing a 
problem of stability for beam transverse microwave 
oscillations in a presence of digital damper; the 
impedance and the space charge are taken into account. 
The developed formalism is applied for antiproton beam 
in the Recycler Ring (RR) at Fermilab.  

INSTABILITY BY ITSELF 
Beam particles interact through the vacuum chamber. 

By itself, it always leads to an instability (image charges 
is a single exception). The interaction is described by the 
wake fields and their Fourier images – impedances )(ωZ . 
This leads to a complex frequency shift of the coherent 
transverse motion (coasting beam):  

)2/()()( 2
000 TnZiNrn bZ γωωβω +−=Δ ,      (1) 

where N is the number of particles, 0r is the classical 

radius, β is an average beta-function, and 0T is the 
revolution time.   

Frequency spread in the beam acts against the 
instability, but not always. The beam coherent motion 
cannot be transferred to an incoherent motion of an 
arbitrary particle. This energy transfer is efficient only for 
particles, which individual frequencies are equal to the 
beam coherent frequency, as they see it. This stabilization 
mechanism is Landau damping. Beam space charge 
separates coherent and incoherent frequencies by 
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reducing density of the resonant particles. To be resonant, 
a particle has to compensate the space charge tune shift by 
its chromatic offset ∝ξ and the Doppler shift  ∝ ηn: 

ppnnb /||)( 0 δξηωω −=Δ . 
If the beam is bunched, the ratio between the space charge 
shift and the chromatic shift is not changed. This ratio is 
determined by a specific phase space density D: 

)46/()(/ ||εεωω ⋅≡∝ΔΔ≡ ⊥NDnx bscn , 

where ⊥ε6  and ||4ε  are 95% normalized transverse and 
longitudinal emittances. The Landau damping rate is 

determined by the phase space density of the resonant 
particles. For a Gaussian distribution this rate is 
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The stability condition )Im()( ZL n ωΔ≥Λ  can be 

approximately presented as thxx ≥ with 53~th −x  
logarithmically dependent on the impedance, 
assuming || ZSC ωω Δ>>Δ . Recycler impedance dominates by 
its resistive wall, vertical one is 

2010//mM/20)(Re 0 −≅ΔΔ⇒Ω= ZscZ ωωωωω . 
The Landau damping is an extremely steep function of 

the phase space density, which is not changed with 
bunching. Thus, for the threshold phase space density 

thx , the beam bunching can be neglected and the coasting 
beam model be used with sufficiently good accuracy [1]. 
Stability analysis for RR with the finite bunch length 
taken into account was presented in Ref. [2].  

For RR, a Gaussian beam of 1.8�10¹² pbars within 50 
eV�s and 7 mm�mrad (both 95%) is calculated to be at 
the instability threshold for the chromaticity ξ = -6.  This 
corresponds to the effective phase space density 5.0=D  
(in units of 1010 /(mm mrad eV s)). In the reality, the 
threshold density is about 1.6 times higher. The 
discrepancy is mainly related to the non-Gaussian tails of 
the beam energy distribution. 

ANALOG-DIGITAL CONVERTER 
A damper essentially consists of a pickup, pre-

amplifier, delay line, analog-digital converter (ADC), 
notch filter, low-pass filter (LPF), and kicker, see Ref. [3].  

An amplitude and phase of the high-order LPF are 
presented at Fig. 1.  

 
Figure 1: Amplitude and phase characteristics of the LPF.  

In principle, ADC is a linear operator with explicit 
periodic time dependence. In a simplest case, the ADC 
output is proportional to the beam offset, taken at the 
nearest time of “sampling”. For more complicated 
schemes, the output is a linear combination of several 
nearest samplings.   

For RR, originally the sample frequency was 53 MHz, 
being exactly 588 harmonic of the revolution (to filter out 
all the revolution harmonics). The input signal was 
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detected at 4 times higher frequency, and then an average 
of these 4 numbers went as an output. An example of the 
ADC transformation is presented at Fig. 2 for the input 
frequency 10.6 MHz. ADC transforms any input 
frequency ω into a sequence of all the composite 
frequencies skωω+ , shifted from the input one by multiples 
of the sample frequency sω . 

 
Figure 2: An example of ADC transformation. The input 
is shown by red dots (10.6 MHz), the output is a blue line. 

In this equidistant sequence of frequencies, there is a 
single one, *ω , lying inside an interval ],0[ sω , and this 
value can be taken as a parameter of the entire set of the 
cross-talking frequencies. The continuous parameter 

*ω is referred below as a marking frequency. The analog-

digital conversion T̂  can be described in terms of the 
matrix pqT , transforming incoming frequency 

sp pωωω += *  into a set of the outgoing frequencies 

sq qωωω += * , with p, q = 0,  ±1,  ±2, ...  . In other 
words,  
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Here 4=aN  is the number of averaging points, 

20/2/1 ≈== sss f ωπτ ns is the output sampling time. 
In the following calculations, the linear phase factor in 

pqT  is assumed to be compensated by a proper delay and 

mixing, so it is just omitted and the matrix pqT  gets to be 
real.  

MODE DYNAMICS 
With the ADC, the frequency ω (representing actually 

the wave length of the beam perturbation) is no longer a 
good parameter for the beam modes, each consisting of all 
the composite harmonics. Instead, the beam modes 
constitute infinite sets, each set with its own marking 
frequency *ω . High enough composite harmonics are 
strongly damped by Landau damping; thus, they can be 
neglected and the infinite set of the composite amplitudes 
being reasonably cut. 

Let pA  be an amplitude of the harmonic 

sp pωωω += * . Were the digital damper the only way 

for the beam to interact with itself, the beam dynamics 
would be described as  

∑Λ−=
q qpqp ATdtdA 0/ , 

with 0Λ  as a low-frequency rate, determined by the pre-
amplifier. A solution of this set of linear equations is 
expressed in terms of eigen-vectors, which eigen-values 
are the damping rates for the set of the beam modes. 
Impedance and Landau damping just add their terms to 
the matrix diagonal elements. Thus, the set of the dynamic 
equations follows: 

pZpLq qpqp ApiApATdtdA )()(/ 0 ωΔ−Λ−Λ−= ∑ .  (4) 

The ADC matrix T is strongly degenerated: all its 
eigenvalues, but one, are exact zeroes. With impedance, 
half of these zeroes are getting unstable. With sufficient 
density of the resonant particles, stability can be provided 
by the Landau damping. 

Without damper, for 2.8�10¹² antiprotons inside 
35eV�s and 7mm�mrad (95%), the impedance-driven 
rate and the Landau damping rate are presented in Fig. 3 
below. For  

 
Figure 3: Impedance-driven rate (red) and Landau 
damping rate (blue), 1/s, versus frequency, MHz. The 
modes below 35 MHz are unstable.  

these parameters, the modes below 35 MHz are unstable.  
Results for the stability analysis for the same beam and 

the damper are presented in Fig. 4. On the left, the 
damping rate for the less stable mode is shown as a 
function of the marking frequency for the damper’s low-
frequency rate of 600 turns. Clearly, it is the instability 
threshold (the density D=1.1). On the right, the average 
frequency of this less stable mode is calculated, where all 
the composite frequencies are weighted with amplitudes 
of their perturbations squared. The curve minimum is 
close to the Nyquist frequency 26.5 MHz. 

The calculated threshold is the same for the LPF off. 
The reason is that if the filter is wider then the Landau 
damping boundary, it makes nothing. Otherwise, it makes 
the damper inefficient in a frequency range between the 
filter cut-off and the Landau damping start. The filter is 
useful though for another purpose – suppression of the 
amplifier noise to prevent emittance growth.  

Offset of the sampling frequency from a revolution 
multiple would stop the harmonics cross-talk through the 
beam. As a result, the calculated threshold increases on ~ 
20% for the mentioned parameters.    
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Figure 4: Damping rate, 1/s, of the least stable mode as a 
function of the marking frequency (left), and the average 
frequency of this mode vs. marking frequency (right). All 
the frequencies are in MHz. 

OBSERVATIONS AND MODERNIZATION 
Without damper, the instability blow-up was observed 

at the density D = 0.8 versus D = 0.5 calculated for the 
Gaussian distribution. This looks about consistent with 
the real distribution which tails are higher than Gaussian. 

With the damper, the beam was cooled up to D = 1.5, 
(with 53 MHz of the ADC output). A benefit from the 
damper is close to the predicted factor of 2 (1.1/0.5 
≈1.5/0.8).   

For doubled sample rate, 106 MHz, the calculated 
threshold is 30% higher. The result is not sensitive to the 
averaging parameter aN , averaging is still useful though 
for the noise suppression. 

A goal with 6�10¹² antiprotons in 40 eVs and 5 mm 
mrad corresponds to the effective density D = 3, is about 
2 times higher than the threshold with the existing 
damper. This requires broader band of the kicker. 

With a 4 times shorter kicker (already installed) and the 
sampling rate of 212 MHz, the calculated threshold goes 
up to D = 2.5 (e. g. 6�10¹² antiprotons in 50 eVs and 5 
mm mrad ). Remembering that the measured threshold of 
the non-Gaussian beam was ~ 1.5 times higher than one 
calculated for the Gaussian model, this means that the 
new kicker and already effective 212 MHz of the 
sampling should be sufficient for the Run II goal.    

SUMMARY 
Threshold of the resistive wall transverse instability is 

calculated without damper; the space charge is taken into 
account.  

A specific of digital dampers as linear operators with 
explicit periodic time dependence modifies structure of 
the eigen-modes. The stability problem with the digital 
damper is solved.   

Calculations are in a reasonable agreement with 
measurement data. 

Quadrupling of the sample frequency and 4 times 
shorter kicker should make the entire damper sufficient 
for the Run II goals. 
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