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Abstract

Luminosity in e+e− collider is limited by emittance
growth due to the beam-beam interaction. Emittance is de-
fined as phase space volume of each degree of freedom in
which particles in beam occupy. The emittance growth is
caused by diffusion due to the strong nonlinear force of the
beam-beam interaction. The diffusion is strongly related
to the number of the degree of freedom of considering dy-
namical system. A very high beam-beam parameter can be
realized to reduce the number of degree of freedom effec-
tively by optimizing the operating tune of an accelerator.

INTRODUCTION

Emittance growth, which limits accelerator perfor-
mance, is the most important issue of accelerator physics.
Emittance is defined as an average of a half of Courant-
Snyder invariant (J) over all beam particles, where the in-
variant is given for each particle in each degree of freedom
in linearized system. Emittance is constant of motion in
linear system from its definition; average of the invariant.

There are several possibilities, which cause the emit-
tance growth in storage rings. Linear coupling and coherent
instability are rather trivial sources. We discuss an inco-
herent emittance growth due to nonlinear diffusion for the
beam-beam interactions in this paper. The number of de-
gree of freedom, which is the number of canonical variable
pair in Hamiltonian, plays a important role for the emit-
tance growth [1]. We discuss the importance of the degree
of freedom and a concept, “reduction of the degree of free-
dom”, to achieve a very high beam-beam parameter in cir-
cular collider.

Another is an external diffusion which is induced by syn-
chrotron radiation, intrabeam scattering and a noise from
hardware, for example bunch by bunch feedback system
[2]. These later two, which are not new subject, are related
to essentials of the classical chaos dynamics.

WEAK-STRONG MODEL

The beam-beam system including N+ + N− particles
characterized by trajectory in 6× (N+ + N−) dimensional
phase space, where N+ and N− are the number of parti-
cles in colliding two beams. We use so-called weak-strong
model to treat this complex system. One beam is approxi-
mate to be a fixed charged distribution located at the colli-
sion point. The degree of freedom is now reduced to three
coordinate and s, 3 + 1 = 4. The Hamiltonian is expressed
by

H(x, px, y, py, z, pz; s) = μJ0 + δP (s)U(J0, φ0) (1)

where J0 is invariant (action variable) defined in linearized
system, δP (s) the periodic delta function and U the poten-
tial of the beam-beam interaction.

If the system is solvable, J(J 0, φ) is given by a canon-
ical transformation so that Hamiltonian is only function
of J . A particle moves along a trajectory determined by
J(J0, φ) =const.

For electron/positron ring, an equillibrum distribution of
beam particles are determined by Fokker-Planck equation,
which includes the radiation excitation and damping. The
beam distribution for a solvable system is expressed by

Ψ(J) ∝ exp
(
−J1

ε1
− J2

ε2
− J3

ε3

)
(2)

Since the new action (J) is deviated from original action
J0, this distribution, which is distorted in the phase space,
gives a kind of emittance growth, but the growth is limited.

Linear system is one of typical example of solvable sys-
tem. Emittance growth does not exist in the linear system.
System with one degree of freedom is another solvable sys-
tem. Longitudinal dynamics can be one degree of freedom,
since synchrotron tune is slow. We have an invariant J(H),
but have a kind of emittance growth, so-called potential dis-
tortion. However this emittance growth is considered as a
redefinition of J as shown in Eq.2. This type of emittance
growth is not our subject.

Transverse dynamics have two degree of freedom at
least, since Hamiltonian is a function of s. System with
two or more degree of freedom is generally unsolvable For
unsolvable system, invariant does not exist, in other words,
the “invariant”, which is defined in linearized system, is
not invariant now. It is important how the “invariant” be-
haves in the nonlinear system, because emittance is given
as an average of the “invariant” for beam particles. People
know the number of degree of freedom is essential for the
behavior of the “invariant”.

In the system with two degree of freedom, motion of par-
ticle is represented with Poincare map in two dimensional
phase space. Concentric circles, which are distorted by
nonlinear force, is drown in two dimensional phase space
for each initial amplitude (KAM surface). Some areas are
not single solid curve, but are island and chaos. Anyway
the “invariant” is bound in a region, though it is not an ex-
act invariant. Therefore emittance growth is limited.

For three and four degree of freedom, particle motion is
represented in four and six dimensional phase space, re-
spectively. Concentric circles can not be drawn, if motion
is mapped into two dimensional phase space: that is, the
“invariant” are not bound in a region. Now the behavior of
emittance is compete different from that of solvable or two
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degree of freedom. Emittance, the average of the invari-
ant for particles, has a diffusion nature: that is, emittance
grows as a function of time like the solution of diffusion
equation.

εy(t)/εy(0) ≈ 1 + Dt (3)

where D is diffusion rate. Needless to say, the increase
of the emittance, which result from complex nonlinear
dynamics, does not necessarily behave clearly linear, but
should be monotonous.

Liapunov exponents [3] are used to characterize the
chaotic behavior of nonlinear system quantitatively. We
are interested in the evolution of beam size and luminos-
ity, which is statistical behavior of the nonlinear chaotic
system, but not interested in chaotic behavior of single par-
ticle. The diffusion rate can be a direct measure of the
Chaotic behavior for our purpose.

The diffusion rate is estimated using a simulation based
on the weak-strong model. Bassetti-Erskine formula [4]
is used for the transverse beam-beam force and so-called
synchro-beam mapping is used for the longitudinal [5].
The vertical beam size 〈y2〉−〈y〉2 is calculated turn by turn
and the diffusion rate is calculated by fitting a linear for the
beam size variation. The radiation damping and excitation,
which are included in usual weak-strong beam-beam sim-
ulations, are removed.

DIFFUSION RATE

We first consider a two dimensional beam-beam system.
The strong beam is approximated to be a thin charge dis-
tribution by bi-Gaussian with σx and σy . Particles in the
weak beam experiences a kick at s = s∗ + nL, where s∗

is the collision point. This system is that with three de-
gree of freedom system, since Hamiltonian is function of
x, px, y, py, s.

The diffusion rate is calculated in tune space (νx, νy)
with step of 0.01. The nominal beam-beam parameter is
0.14. Figure 1 shows the diffusion rate in the tune space.
The diffusion rate, which is comparable with or more than
the damping rate, affects the beam-beam performance. For
example of KEKB and DAFNE, which is B and φ fac-
tory machines, respectively, the damping rates of emittance
are 2/τ = 5 × 10−4 and 2 × 10−5 par turn, respectively.
We mainly target accelerators with damping time of several
1000 turns like KEKB in this paper. For accelerators with
slower damping time, simulation with a higher statistics to
calculate the slower diffusion rate is required. The diffu-
sion rate is negligible in wide tune area for KEKB in two
dimensional model.

Figure 2 shows the diffusion rate in the tune space for
three dimensional simulation with the bunch length, σz =
βy . The diffusion rates are calculated for zero and finite
crossing angle, σzθ/σx = 1 in plots (a) and (b), respec-
tively.

We have an area with strong diffusion near (νx, νy) =
(0.65, 0.65). It is cross point of some resonances 3νx =
1, 2νy + νx = 1 and 3νy = 1. Each resonance line is
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Figure 1: Diffusion rate of vertical beam size for two-
dimensional beam-beam system in the tune space (0.5 <
νx < 0.7, 0.5 < νy < 0.7).

weak compare than that at the cross point. A area near
νx ∼ 0.5 has a very low diffusion rate. For finite crossing
angle, the region with lower diffusion rate than the damping
rate is very narrow, is limited near (0.51,0.55) which is just
operating point of KEKB.
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Figure 2: Diffusion rate of vertical beam size for three-
dimensional beam-beam system in tune space (0.5 < νx <
0.7, 0.5 < νy < 0.7). Plots (a) and (b) are given for zero
and finite crossing anle, respectively.

We now discuss the special characteristics of the operat-
ing point near a half integer of the horizontal tune. Every-
one knows that the dynamic beta effect work strongly in the
horizontal: that is, βx → 0. While the dynamic emittance
effect makes increase εx →∞, with the result that σx → 0
slowly.

Note that the diffusion rate of vertical beam size is fo-
cused now for νx ∼ 0.5. We image a particle motion
which experiences the beam-beam force for nux = 0.5.
The horizontal coordinate x of the particle is swapped
x ↔ −x, with the result that the beam-beam force is
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F (x) = −F (−x). The motion of the particle is described
in two-degree of freedom of y and s. As is mentioned be-
fore, the diffusion for the system of two degree of freedom
is limited. This means that very high luminosity can be
achieved in this operating area. The same discussion is sat-
isfied for νx ∼ 0. The figure and above discussion suggest
as follows,

lim
x→+0.5or+0

D = 0. (4)

Everyone knows that we have a strong beat of horizontal
beta function and the momentum at the collision point di-
verge, px → ∞, at the limit. Therefore an optimization of
νx is necessary.

We discuss the motion near νx = 0.5 or 0 quantitatively.
Sophisticated discussion is in Ref. [6]. One tur map of the
particle is expressed by

x =
(

1− μ2
x

2

)
x + βxμ

(
1 +

μ2

4

)
(5)

px = −μ

β
x +

(
1− μ2

x

2

)
px − Fx(x, y). (6)

whre μ = 2πνx. The beam-beam force F is expanded
around y = 0.

Fx(x, y) = Fx(x, 0) +
∂Fx

∂y
|y=0y +

1
2

∂2Fx

∂2y
|y=0y

2 + ...

(7)
The first order term of the expansion is zero, and the sec-
ond term gives a correction of σy/σx. Neglecting the cor-
rection term, the beam-beam force is only function of x.
Then taken the limit μ → 0 is taken, the map is reduced
to be a differential equation: that is, horizontal motion is
decoupled and reduced to one degree of freedom. The dif-
ferential equation is integrable and the solution is given as
x = x(s), px = px(s).

We confirm this result with a simulation. A particle tra-
jectory is plotted in x − px space for several horizontal
tunes, νx =0.503,0.51,0.52 and 0.54, as shown in Figure
3. The particle has a vertical amplitude of 3σy = 0.03σx at
the initial condition. The trajectory nearer the half integer
is expressed by a solid curve, while that apart from the half
integer has a chaotic feature.

Once the horizontal motion is integrated, the vertical
equation, which is represented by x, y and s, is reduced
to that for two degree of freedom, x and s.

The longitudinal z motion is solved as z(s), since it is
not strongly affected by the beam-beam force. The vertical
motion is again reduced to two degree of freedom without
crossing angle.

CONCLUSION

We discussed the beam-beam limit caused by nonlinear
diffusion. The number of degree of freedom is essential for
the magnitude of the emittance growth. Operating point
near νx → +0.5 and 0 gives the reduction of the degree of
freedom, with the result that very high luminosity perfor-
mance is expected.
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Figure 3: Phase space plot in x − px. y0 = 2μ m≈ 3σy.
plots (a), (b), (c) and (d) is given for νx =0.503,0.51,0.52
and 0.54, respectively.
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