Superconducting RFQ's Ready for Ion Beam Operation at INFN-LNL

G. Bisoffi, A.M. Porcellato, V. Andreev, G. Bassato, G. Bezzon, S. Canella, F. Chiurlotto, A. Lombardi, *INFN, Laboratori Nazionali di Legnaro (I)* E. Chiaveri, *CERN (CH)* W. Singer, *DESY (D)* T. Shirai, *NSRF-ICR, Kyoto University (J)* S. Stark, *Cinel s.r.l., Vigonza (I)*

<u>Context</u>: an injector of q+ heavy ions for INFN-LNL SC linac

Why to switch from a Tandem to a q+ injector?

Giovanni BISOFFI – EPAC 2002

PIAVE Injector Layout

Giovanni BISOFFI – EPAC 2002

Two SC-RFQs in a cryostat

Approaching Beam Commissioning

Under the Vault

Giovanni BISOFFI – EPAC 2002

How it works

 Focusing ⇐ main quadrupolar E_⊥
 Acceleration ⇐ small but effective E_∥ modulation of 4 vanes
 (synchronous with beam bunches)
 one modulation period = βλ

$$U(r,\theta,z) = \frac{V}{2} [A_{01}r^2\cos 2\theta + A_{10}I_0(kr)\cos kz]$$

Ideal for β**=v/c < 0.05** Typically **NC**, **50-400 MHz**

NORMAL CONDUCTING

 Δ **U** ~ 100 kV, **Q** ~ 10⁴, d.c. < 20% with a few remarkable exceptions (LEDA: 2.2.MW rf, 100 mA-beam)

SUPERCONDUCTING ∆U~ 300 kV, Q~10⁹, d.c. = 100% <u>Motivated by lower</u> rf power (and

 μ A beam) + existing SC booster

Giovanni BISOFFI – EPAC 2002

Construction Issues

Giovanni BISOFFI – EPAC 2002

 Q-curves with SRFQ2 (2000-2002): troublesome life of a huge SC resonator

 Preparing for Beam Operation: locking in f and A with natural drifts, He-P induced drifts, Lorenz detuning, microphonics

• A few more steps to take ...

Evolution of SRFQ2 Performance (1)

High Pressure Water Rinsing

- 5 liters acetone
- 500 liters 80 bar demineralized water
- 10 liters ethanol
- Drying by filtered
 warm air
- Immediate closing by end-plates

Evolution of SRFQ2 Performance (2)

Erosion of high power coupler

- <u>Plasma discharge</u>: sputtering of Cu and stainless steel layer in a high-j region of tens of cm² in SRFQ2
- Chemical Polishing would have taken months
- 3M Scotch Brite lapping followed by HPWR (2 weeks)

ACTIONS

Giovanni BISOFFI – EPAC 2002

Evolution of SRFQ2 Performance (3)

Discharges between electrodes and one end-plate

The facing end-plate

- Chemical Polishing again avoided in a first instance
- 3M Imperial lapping, with Al₂O₃ abrasive of decreasing roughness (60 ÷ 2 μm)

HPWR followed

Giovanni BISOFFI – EPAC 2002

Superconducting RFQs at INFN-LNL

ACTIONS

Evolution of SRFQ2 Performance (4)

Slow EM-frequency drifts

f Changes vs. He bath-P

Cryogenic-Plant Specs: 1.2 ±0.05 bar; $\Delta P/\Delta t < 2 \text{ mbar/min} \rightarrow 1.33 \text{ Hz/s}$

INFA

Capacitive slow tuning

- 2 such end-plate tuners (backlash-free system)
 <u>Sensitivity</u>: 0.5 Hz
- Full f-range: 300 kHz
 (150 kHz → +∆f tuner;
 -150 kHz → -∆f tuner)
- <u>f change rate</u> ≥ 2.5 Hz/s

Inward-Outward Movable by ± 3 mm

Giovanni BISOFFI – EPAC 2002

Fast Frequency Drifts: micro-phonics

 $\Delta f = 20 \text{ Hz}$ $P_{\text{ampl}} = (2\pi U \Delta f) = 500 \text{ W}$

1 kW amplifier, $Q_L \sim 10^6$ SEL mode, ϕ &A locked

- 1. Structure stiffened by a Ti cage
- Lowest mechanical mode ~ 120 Hz
 (vs. 40÷70 Hz of typical low b SC cavities)
- 3. SC-linac hall: resonably quiet > 60 Hz

Giovanni BISOFFI – EPAC 2002

Lorentz f-detuning

giving attractive force

<u>Radiation Pressure</u>: $P = (\mu_0 H^2 - \epsilon_0 E^2)/4$

Giovanni BISOFFI – EPAC 2002

Folded Resonance Curve

NE

Folded Phase-Frequency Curve

Frequency Shift [Hz]

Control of Frequency Drifts

- Slow Drifts (natural, induced by He pressure changes):
 1 end-plate deformation (ΔC), >2.5 Hz/s
- Fast Drifts (micro-phonics): SEL mode with <u>amplitude &</u> <u>phase locking</u> (window < 20 Hz) on a Lorenz-detuning folded curve

<u>RESULTS</u>

- **SRFQ2**: tested in this way for 1÷1.5 hour periods
- Locking for longer periods: when the double end-plate slow tuner will be implemented (June 2002).
- A strong mechanical vibrator was located both on the cryostat and on the floor, driven up to 300 Hz. Unlocking at 80 and 161 Hz: it is a stiff resonator
- Window < 200 Hz, <u>Fast Tuners</u> (ANL→LNL, July 02)

Giovanni BISOFFI – EPAC 2002

SRFQ1 under test ...

- SRFQ2 was dismounted (03/02)
- SRFQ1 in the test-cryostat: <u>May-September 2002</u>
- Q-curves, cavity characterization and locking tests with the doubleend-plate slow tuner
- October 02– March 03: mounting of SRFQ1 and SRFQ2 in the final cryostat, tests

• Beam commissioning to follow

Giovanni BISOFFI – EPAC 2002

Last word on locking... (beg. 2003)

- When both SRFQ's will be tested on the final cryostat
 - In the Injector Vault (local noise)

• With the Cryogenic Plant feeding liquid He at 1.2 bar in refrigeration cycle

Giovanni BISOFFI – EPAC 2002

PIAVE design values

Designed for ²³⁸U²⁸⁺ (pre-bunched) beam from an ECR on a 315 kV platform

	SRFQ1		SRF2		
	In	Out	In	out	
Energy	37.1	351.3		585.4	KeV/u
	8.82	83.61		139.33	MeV
Beta	0.0089	0.0275		0.0355	
Voltage	148.0	148.0	280.0	280.0	kV
Length		138.9		74.4	ст
N of cells		43		13	
т	1.2	2.8	2.7	2.8	
a	0.7	0.4	0.8	0.8	ст
R_{θ}	0.80	0.80	1.53	1.53	ст
ϕ_s	40.0	18.0	12.0	12.0	deg
E _{p,s}		24.		25.5	MV/m
U		1.8		3.5	J

Acceptance (norm)0.8Output long. emittance0.7

mm mrad ns keV/u

End-Plate RF Joint

OPTIONS

• INDIUM WIRE (NC): \rightarrow 0.5 mT (LNL QWRs)

LEAD WIRE:
 → 2 mT (ANU-Canberra SLRs)

 NIOBIUM WIRE & GASKET : beyond 2 mT (Argonne SLRs), if sufficient pressure is exerted to break the surface oxide film (K.W. Shepard, p.c.) BUT huge, non-circular, complicated for the SRFQ.

NO JOINT: with sufficient pressure (Nb/Cu end plate might help)

Effect of Mechanical Pressure on the End-Plate SC joint

Cryogenic System of PIAVE

Feeding the SRFQs' and the QWRs' cryostat with a refrigeration power of 300 W @ 4 K and 500 W for thermal radiation shields (proper redundancy)
 Received from INFN-Frascati's dismantled LISA linac, adapted by Linde Cryogenics, delivered to LNL. Power tests in May 2002.

Cryo-plant and RF racks on top

SRFQs Cryostat

Joint design LNL-Budker Institute May 2002: delivery to LNL

It features:

• Ti liquid He dewars (thermal contr.)

• Liquid N thermal shield

 Alignment procedure: separate for the 2 cavities, cold-adjustable with external actuators, 0.1 mm precision specified and possible
 Alignment test with dummy cavities: to be done at Budker I. @ 300 and 77 K prior to shipment.

Assessment of the alignment at 4 K by measuring frequency splitting between dipole modes

Resonator Controller

RESONATOR CONTROLLER BLOCK DIAGRAM

Giovanni BISOFFI – EPAC 2002