INTRA-BEAM SCATTERING MEASUREMENTS IN RHIC

Wolfram Fischer R. Connolly, S. Tepikian, J. v. Zeijts, K. Zeno

European Particle Accelerator Conference Paris 6 June 2002

- 1. Introduction
- 2. Bunch size measurements
- 3. IBS simulations
- 4. IBS at storage above transition
- 5. IBS at injection below transition
- 6. Summary

- Intra-beam scattering limits beam and luminosity lifetimes in RHIC with gold beams
 - Longitudinal \rightarrow debunching (THPRI073 – A. Drees, et al., "Abort Gap Cleaning in RHIC")
 - Transverse \rightarrow emittance growth
- IBS will counteract electron cooling in RHIC (V. Parkhomchuk, I. Ben-Zvi, "Electron Cooling for RHIC", BNL C-A/AP/47, 2001)
- LHC heavy ion program SPS at injection (D. Brand, L. Vos, CERN)
- IBS determines equilibrium beam size in linear collider damping rings (K. Bane et al., ATF measurements, SLAC-PUB-8875, 2001)

Debunching during store

Au⁷⁹⁺ stores, β *=5m, $N_{\rm b}$ =0.25...0.4 · 10⁹/bunch, storage rf system

Wolfram Fischer

Bunched beam lifetime

Intra-beam scattering measurements

- Observe free expansion of bunches
 - Measure bunch length vs. time
 - Measure transverse emittance vs. time
- Measurements of
 - Au⁷⁹⁺ beams at store and injection
 - p⁺ beams at store
- Comparison with IBS simulations
 - 90 min at store (typical store: 5 hours)
 - 15 min at injection (typical injection: 5 min)

	unit	Au ⁷⁹⁺	Au ⁷⁹⁺	p^+
		injection	store	store
relativistic y	• • •	10.5	107	107
ions per bunch $N_{\rm b}$	109	0.2 0.7		100
rms emittances $\boldsymbol{\epsilon}_{x,y}$	μm	2.0	2.5	3.5
rms bunch length	m	1.4	0.3	1.0
gap voltage V_{gap}	MV	0.3	3.0	0.3
		Accelerating rf system 28 MHz	Storage rf system 197 MHz	Accelerating rf system 28 MHz

Bunch length measurements

4 accelerating buckets

Wall Current Monitor

- time resolution 0.25 ns
 (buckets: 35 ns and 5 ns)
- recording period 0.1...5 min
- used for:
 - bunched current
 - bunch length (Gaussian fit)

Transverse emittance measurements

Transverse beam size time evolution

Ionization Profile Monitor

R. Connolly, S. Tepikian

- recording period 0.5...5 min
- not always reliable data
 - stray electrons
 - horizontal monitor position not optimal
 - small rest gas ionization with protons
- used:
 - at injection
 - calibration at store

Wolfram Fischer

Transverse emittance measurements — store

14:30 15:00 15:30 16:00 16:30 17:00 17:30 Time 3 hours

At store emittance derived from luminosity signal and bunched beam currents

• assumes same emittances for both rings and planes

• allows to analyze all available store data

$$\mathcal{E}(t) = f \frac{N_B(t)N_Y(t)}{L(t)}$$

Determined with

- IPM data
- Measured beam-beam tune shift

- Used program by J. Wei (based on PAC'93 article, following work by Piwinski, Möhl, Sacherer, Martini, Parzen)
- Only FODO cells included
- Compact code, easy to simulate large number of cases (= individual measurements)
- Assume fully coupled beams $(\varepsilon_x = \varepsilon_y)$, typical $\Delta Q_{\min} \approx 0.01$ at injection and storage
- Beam loss explicitly included

Storage — **above transition**

- Analyzed 22 stores with 2420 bunches
- Intensity $0.2...0.4 \cdot 10^9 \operatorname{Au}^{79+}$ ions per bunch
- Only stores with β*=5m considered, significantly larger Δε/ε with β*=2(1)m, suspect Yellow triplet errors
- Bunch length averaged over 55 bunches
- Each store simulated separately with
 - Measured initial average bunch length
 - Measured initial average emittance

Storage — **above transition**

NATIONAL

13

After 90 min	$\Delta\sigma/\sigma$	$\Delta \epsilon / \epsilon$	
Measured Au	20%	24%	
Computed Au	18%	17%	- IBS growth rates smaller by factor 10
Measured p		5% #	- Beam-beam stronger by factor 2

Wolfram Fischer

Injection — below transition

- Less data than at store
- 8 bunch length measurements, 7 transverse emittance growth measurements
- Intensity $0.4...0.7 \cdot 10^9 \operatorname{Au}^{79+}$ ions per bunch
- Only 3 cases with longitudinal and transverse data at the same time
- All bunch length measurements simulated; if emittance not available, average substituted

Injection — below transition

After 15 min	$\Delta\sigma/\sigma$	$\Delta \epsilon / \epsilon$
Measured Au	8%	31%
Computed Au	6%	-4%

IBS measurements in RHIC — summary

- Intra-beam scattering limits beam and luminosity lifetimes in RHIC with gold beams
- Measured free expansion of beam
 - At store with Au^{79+} and p^+ (above transition)
 - At injection with Au⁷⁹⁺ (below transition)
- At store good agreement with simulations:
 - Longitudinally without adjustments
 - Transversely after accounting for non-IBS growth, estimated with p⁺ measurements
- At injection:
 - Longitudinally reasonable agreement (discrepancy may be due to transverse growth)
 - Transversely large growth observed, non-IBS

