

THE JAERI/KEK JOINT PROJECT FOR HIGH-INTENSITY PROTON ACCELERATOR

Yoshi Yamazaki Group Leader, JAERI/KEK Joint Accelerator Group

The 8th European Particle Accelerator Conference Paris, 3rd to 7th June, 2002

Configuration of the Accelerator Complex

Plan View of the Facility

Site View of the Project

ПП

Why Do We Need High Intensity Protons?

World's Proton Accelerator

חר

World Centers

Future neutrino sciencesFuture neutron sceinces

Asian Map

Location of JAERI at Tokai

Nuclear/Particle Physics (1)

- Neutrino oscillation and neutrino mass (SuperK + K2K)
 - SuperK's atmospheric n experiment + recent SNO experiment suggests the finite mass for n_m and n .
 - K2K n_m disappearance experiment also suggests the finite mass of n_m.
- From measurement of m_n to the lepton family mixing (Joint Project)
 - Flux (n_m) at the Planned 50 GeV PS
 > 100 x Flux (n_m) at KEK 12 GeV PS
- Future facility ... towards CP violation

Construction and Commissioning

Year Item	2001	2002	2	2003	2004	200	05	2006	2007
Linac Bldg					Power 0.	1% 1%]	0% ~100	%
Linac Accel			Constructi	on I	nstallatio	Beam Test			
3GeV Bldg					Powe	er 0. 1% 1	%	$0\% \sim 100$	%
3GeV Accel			Constr	uction	Instal	aticn _{Beam}	Test		
3GeV BT					Install	ation	Beam Test		
3GeV Exp Bldg									
3GeV Exp Fac				Constru	ction	Installat	ion Beam	Test	
50GeV Bldg						Power 0	1% 1%	10% ~10	0%
50GeV Accel				Construct	ion I	nstallatic	nBeam Test		
50GeV Exp Bldg				Canad		Installa	tion Beam	Test	
50GeV Exp Fac				Const	ructio <u>n</u>		Test Peri	od Open to	Users
						Start	Usage		03613

Organization for Construction

Project Team

Accelerator Group Organization (Instrument Construction)

Additionally 32 FTE's are from industries and from post-docs

~ 50-GeV, 15 µA, slow and fast extraction for nuclear and particle physics experiments

~ 1 GeV, 1 MW, <1 μs, ~ 25 Hz for spallation neutron source

Features of the Accelerator Complex

- The cascade system is suitable for the several-ten GeV machine.
- **The prototype is the present KEK-PS.**
- The booster Rapid-Cycling Synchrotron (RCS) can also be used for the Neutron Souce. This may be more powerful than the accumulator ring (AR) system with a full-energy linac.
- The present project is a kind of scale up of the KEK-PS by a factor of ten.

RCS Advantage vs AR

- Lower Beam Current
- Lower Injection Energy
- Higher Injection Beam Loss is allowed.

(If one increases the beam energy by a factor of 7.5 times, the allowed beam loss during the injection is 7.5 times as high as that for AR with the same beam power.)

Perhaps immune against the e-p instability

RCS Disadvantage vs AR

RCS Challenges

- Lower injection energy in turn implies higher space charge effect. Large aperture magnets are required, giving rise to large fringing fields.
- Powerful RF accelerating system
- Ceramics vacuum chamber with RF shield to avoid the eddy current effect
- Stranded coil to overcome the eddy current effect on the magnet coils.
- Precise magnet field tacking is necessary for each family of magnets

Proton linac

Features of the Linac Design (1)

Conflicting Requirements

Higher accelerating frequency is preferable

- lower bunch current
- short focusing period

Electromagnet is preferable in order to keep the flexible knob (Large Drift Tubes, Lower frequency)

- Both the equipartitioning and constant phase advance are realized
- The parametric resonance can be avoided

Electromagnets within small DT's

Coils produced by electroforming together with wire cutting

Huge power feeding system

Coil of Electromagnet in Drift Tube

The coil is electroformed and Wire-cutted.

Features of the Linac Design (2)

- Beam loss, and beam quality degradation arise at the transitions
- Beam halos arise from the mismatching
- Longitudinal transition (200 MeV from SDTL to ACS) is separated from the transverse transition (50 MeV from DTL to SDTL)
- 1% amplitude control, 1-degree phase control, ~ 50 μm alignment (perhaps actually ~ 0.1 mm at best), axial symmetry

Features of the Linac Design (3)

- **\pi-mode stabilizing loop (PISL)**
- High-quality electroplating technique (PR-method)
- Electroformed coil
- Axially symmetric high-energy accelerating structure: Annular-Ring Coupled Structure (ACS)
- Chopping system

Focusing scheme in the DTL

Phase advances in the DTL for equipartitioning and constant phaseadvance focusing schemes.

Required magnetic field gradient for equipartitioning and constant phase-advance focusing schemes.

Cs-seeded Ion Source

30mA RFQ

The 30mA RFQ installed in the test area

Inside view of the RFQ stabilized with PISLs

Conditioning of the 30mA RFQ

Conditioning with 20µsec, 50Hz pulse.

Reached 405kW with 600µsec and 50Hz (3% duty), after more 17hours conditioning

Waveform of the RFQ beam

Emittances at the RFQ exit At I = 11 mA

normalized $\varepsilon_{4rms} = 0.69\pi$ -mm-mrad $\varepsilon_{4rms} = 0.78\pi$ -mm-mrad

MEBT Photograph

MEBT Beam Experiment

Output signals of the three current monitors in the MEBT during first beam experiment. The beam transmission ratio of nearly 100% was achieved with the aid of some tunings of the focusing strength in the MEBT.

DTL Tank 1 with DT's Installed

QuickTimeý Dz ÉtÉHÉg - JPEG êLí£ÉvÉçÉOÉâÉÄ ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ…ÇŐïKóvÇ-Ç ÅB

Conditioning of SDTL1

Parameters of the 3-GeV Synchrotron

Painting Emittance at Injection(π mm.mrad) Collimator Acceptance				
Bunching Factor with 2nd harmonic				
Incoherent Tune Shift with	0.16			
Bunching Factor without	0.27			
Incoherent Tune Shift	0.24			

RCS Configuratiion

- New RF Cavity loaded with Magnet Alloy
- Ceramics vacuum chamber, being rectangular
- Wide aperture magnets with stranded coils
- Injection system

Magnetic Alloy * RF behaviour at high field

μ**Qf (shunt.imp.) vs. B_{rf}**

Novel RF Cavity with Finemet

- High Permeabiility Magnetic Alloy
- Highest Accelerating Field Gradient (50kV/m Accomplished

FINEMET-loaded Accelerating RF Cavity

Rectangular Ceramics Vacuum Chamber

Circular Ceramics Vacuum Chamber

ПП

RF shields were electroformed. Main bodies were metalized and silver-brazed.

R&D Dipole Magnet for 3-GeV Synchrotron

Repetition rate : 25[Hz], Core length : 1.0[m], Gap height : 210[mm] Max. field : 1.1[T] (at 3GeV) , Min. field : 0.27[T] (at 400MeV)

H-Injection System for 3GeV Proton Synchrotron

Emittance Growth Simulation in RCS

DZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽÇ...ÇÕÅA ÁgQuickTimeýÀhã@î\ägi£Ç²AÀ ÁgGIFÁhêLí£ÉvÉçÉOÉâÉÀÇ™ïKóvÇ-ÇÅB

Beam Loss Distribution

2001/11/16

Configuration of R&D collimator hardware

Injection Scheme to 50-GeV Ring

ПП

Space Charge Tune Shift

. 50GeV MR ∆Q=- 0.14

*emittance "beam intensity 3.3x10" ppp "bunching factor "form factor

54 r.mm.mrsaf

0.27

1.7

rFN

. 3 GeV RCS (for 50 GeV MR) ∆Q=-0.22

*emittance 144 -mmmraaf "beam intensity 8.3x10⁴/ppp "bunching factor 0.42

50-GeV Ring Lattice *Imaginary transition gamma : 7 -> 32i (no transition energy) * Negative dipspersion at bending magnets : missing-bend structure *Zero dispersion at straight section: non synchro-beta coubling 3

Dipole Magnet for 50-GeV Ring

gap Height106mmuseful Aperture120mmfield0.143-1.9Tlength5.85mweight34 ton

good agreement with calculations

ПП

Quadrupole Magnet for 50-GeV Ring

Bore Radius 63mm Useful Ap. 132mm Max. Field 18T/m Length(max.) 1.86m

Electrostatic Septum R&D

ESS(RED) assembly

- JFY01: Most components for 200-MeV Linac and Bldg. to be ordered
- Mid JFY02: Most components for 400-MeV Linac to be ordered
- Summer JFY04 : Bldg. Completed, Installation to be started
- March JFY05: Commissioning to be started
- Mid JFY 06: Beam injection to RCS to be started

- **JFY02:** Half of components for and Bldg. to be ordered
- **JFY03: Remaining half of components to be ordered**
- March JFY04 : Bldg. Completed, Installation to be started
- Mid JFY06: Beam injection to RCS, that is, RCS commissioning to be started
- March JFY06: Beam extraction to the Neutron Source and to the 50-GeV Ring

50-GeV Ring Schedule Milestones

JFY01: Most of magnets and power supplies to be ordered

- **JFY02:** Remaining components to be ordered
- Mid JFY05 : Bldg. Completed, Installation to be started
- March JFY06: Beam injection to the 50-GeV Ring and its commissioning to be started
- Mid JFY07: Beam extraction to the Nuclear and Particle Experimental area

Summary

- The accelerator scheme for the high-intensity proton accelerator facility project in Japan is unique as follows.
- The RCS scheme is chosen for the MW proton machine producing the pulsed spallation neutrons.
- The MR is attempting to realize the MW proton machine also for the several ten GeV region.
- Not only for the scientific and engineering output, but this accelerator complex will also open up the new era for the field of the accelerator technology.
- Together with the success of the SNS and/or ESS projects, this project will contribute a lot to the future several or ten MW accelerators, which are really required for the 21st centuary science and technology, including the biology, the nuclear and particle physics, the energy development, the environmetal science/technology and so forth.