

Fulvia Pilat

- **#** Introduction, RHIC run organization
- Gold run 2001 [D.Trbojevic at al. MOPLE062, MOPLE061] performance – developments – challenges & limitations
 Polarized proton run 2001 [T.Roser et.al. THAGB003] performance – developments – challenges & limitations
 Beam experiments 2001
 Plans for run 2003
 A vision for RHIC future and upgrades
- **#** Summary

Run 2001 organization

- **# Overall Coordinator**
- **Gold Run Coordinator**
- **# PP Run Coordinator**
- **# Beam Experiments**
- **#** Scheduling Physicists
- **# MCR Shift Leaders**
- **#** System Groups
- **#** System Commissioners
- **#** Operation group

- T. Roser
- D. Trbojevic
- W. MacKay
- F. Pilat
- T. Satogata, A. Drees
- Ahrens, Bai, Drees, Huang, Montag,
- Pilat, Ptitsyn, Satogata, Trbojevic
- M. Brennan (RF), P.Cameron (Instr.)

□ 55 - 56 bunches per ring ✓ (110 bunches tested - intensity limited) \Box 7.5 × 10⁸ Au/bunch (*a*) storage energy) $\Box 1 \times 10^9$ Au/bunch achieved (a) injection \checkmark □ Longitudinal emittance: 0.5 eVs/nucleon/bunch ✓ \Box Transverse emittance at storage: 15 π µm (norm, 95%) \checkmark □ Storage energy: 100 GeV/ amu ($\gamma = 107.4$) ✓ \Box Lattice with β^* squeeze during acceleration ramp: • $\beta^* = 3$ m and 10m @ all IP at injection \checkmark • $\beta^* = 1 \text{ m}$ (*a*) 8 and 2 m (*a*) 2, 6 and 10 o'clock at storage \checkmark □ Peak Luminosity: 5×10^{26} cm⁻² s⁻¹ (2.5 × design average) ✓ □ Bunch length: 5ns (200 Mhz operational) ✓

RHC

2001 Au - Performance

- Collisions at RHIC design beam energy (100 GeV/nucl)
- 200 MHz rf system operational

RHIC

NATIONAL LABORATORY

- > 5 ns bunch length and an interaction region with $\sigma \sim 25~\text{cm}$
- Luminosity exceeding RHIC design luminosity of $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$
- 40% availability is limiting total integrated luminosity

RHIC bunch profile

Integrated Au-Au luminosity

2001 Au - Performance

2001 Au developments

Systems commissioned:

gammaT jump quadrupole system \rightarrow ramp transmission [J.Kewisch, C.Montag]200 MHz storage RF system \rightarrow bunch length [M.Brennan et.al.]

System upgrades:

RHIC

Beam <u>abort [L.Ahrens et.al. MOPLE069]</u>, <u>BPM [T.Satogata et.al.THPRI102]</u> <u>BLM</u> [M.Bai et al.THPRI084], <u>collimators</u> [A.Drees et al. TUPDO035], ...

Improvement of operational procedures

Orbit correction [V.Ptitsyn et al. MOPLE073], <u>decoupling</u>[F.Pilat et al.WEPLE041] <u>chromaticity</u> [S.Tepikian et al.THPRI075] , <u>gap cleaning</u> [A.Drees, THPRI073] <u>Ramp Control [J.vanZeijts, MOPLE059]</u>, <u>Electronic Logbook</u>[T.Satogata,MOPDO009]

Developments

<u>β* squeeze</u> on the ramp, phase lock loop (PLL), crystal channeling

2001 Developments – β^* squeeze

RHIC

NATIONAL LABORATORY

β* squeeze on the ramp worked well
 Few commissioning ramps needed
 Big payoff in luminosity with β*=1m, but:
 lifetime problem in yellow
 up to 50% beta beating
 up to 1m vertical dispersion
 [T.Satogata et al. WEPLE049]

2001 developments - PLL

PLL [P.Cameron et al. THPRI072]
accuracy (<10⁻⁵)
resolution (a few 10⁻⁶)
Auto-lock
chromaticity control essential
coupling control desirable

Run 2001

RHC

□system commissioning

Q measurement on the ramp

beam experiments

Utune feedback (pp run)

Run 2003

NATIONAL LABORATORY

□System improvements □Q feedback from "day one"

PLL measurement on the ramp
Good agreement <u>PLL</u> – <u>Tune Meter</u>
Radial modulation 0.2mm for chromaticity
measurement [S.Tepikian et al.THPRI075]

2001 developments – tune feedback

Controlled tunes to 0.002Corrected for up to 0.02PLL signal→ feedback to main Q bus (blue ring feedback successful)Q-loop integrated into sequencer[C.Schultheiss et al.THPRI041]

2001 Au developments - Crystal

NATIONAL LABORATORY

- □ **Machine reliability** (availability **40%**)
- □Single- and multi-bunch instabilities
- □Intensity limitation due to vacuum break-down
 - Limited to about 40×10^9 Au/ring
- □Intra-Beam Scattering (IBS) [W.Fischer et al.WEBGB002]
 - Transverse and longitudinal emittance growth
 - Eventually will need electron cooling
- **Beam-beam** tune shift and spread
- **Lifetime** deterioration in **Yellow** with β *=1m

RHC

Fast instability causing beam loss controlled by chromaticity everywhere but around transition $(\zeta \rightarrow 0)$ Tune spread (around transition) : Beam-beam (collisions) \rightarrow octupoles (2 families in arcs)

Projection of longitudinal phase space from tomographic reconstruction, before, at and after transition (instability growth ~10 msec) [C. Montag, THPRI074]

Pressure rise – (intensity)

A vacuum breakdown in the RHIC warm sections limited the overall Au beam intensity to ~40x10⁹ ions/ring beam data \rightarrow dependence on intensity, bunch spacing, species

Effect under investigation (2001 data analysis) Likely causes: •Ion induced desorption •Beam loss induced desorption •Electron desorption – e-cloud? For run 2003: •vacuum baking •electron detectors, solenoids? [W.Fischer et al.WEPRI034] [H.Hseuh et al. WEPLE052]

PP run 2001: Layout

2001 PP performance

- **55 bunches** per ring with **0.8 x** 10^{11} **p**/bunch
- Peak luminosity at beginning of store: 1.5×10^{30} cm⁻² s⁻¹
- Energy/beam: 100 GeV
- ■Beam polarization ~ 25 % (→AGS)
- **RHIC polarimeters work reliably**
- Little if any depolarization in RHIC during acceleration and store (Siberian Snakes work)
- Keep β*=3m constant throughout the ramp
 Orbit and tune control on the ramp

Integrated p - p luminosity

2001 PP: Typical store

RHIC

PP developments: PP source

KEK OPPIS upgraded at TRIUMF

70 - 80 % Polarization

15×10¹¹ protons/pulse at source

6×10¹¹ protons/pulse at end of LINAC

[A.Zelenski]

PP developments: Siberian Snakes

Siberian Snake: 4 superconducting **helical dipoles**, **4Tesla**, 2.4 m long with full 360° twist

Funded by RIKEN, Japan Designed and constructed at BNL

PP run 2001: Limitations

- **60% polarization loss** in AGS lower ramp rate from Westingshouse MPS
- **□**Full spin flip at all **imperfections** using partial snake
- **□**Full spin flip at **strong intrinsic**
- Full spin flip at strong intrinsic
 Intrinsic

 resonances using RF dipole
 IRemaining polarization loss from

 coupling and weak intrinsic resonances
 IStrong siberian snake in AGS (~30%)

 Remaining polarization loss from
- □Strong siberian snake in AGS (~30%) of full snake could avoid all depolarization in the AGS (>2003)

[H.Huang et al. MOPLE054] [T. Roser et al. THAGB003] [V.Ranjibar et al. MOPLE050]

2001 Beam Experiments

Beam studies program in parallel to Operations and Machine development for

- **♯** Testing new techniques (→operations)
- **Collaborative beam experiments** (CERN, FNAL,...)

70 h (gold run) and 20 h (PP run)

Main activities/results:

RHIC

- □ IR measurements/corrections [F.Pilat WEPLE042][J.Cardona MOPLE060]
- □ Beam-beam studies [W.Fischer]
- □ Longitudinal [W.Fischer et al. WEPRI033] and transverse [S.Y.Zhang et al. MOPLE066] impedance
- **Resonance** compensation

Spin manipulations

[V. Ptitsyn et al. MOPLE072] [M. Bai et al. MOPLE056 WEPLE040]

[M.Bai, F. Schmidt]

[R.Filler, MOPLE067]

- **Pressure rise** investigations / 110 bunches
- □ Testing of new **decoupling techniques**
- **Beam dynamics** studies

IR corrections: linear, nonlinear

2 methods: **IR bumps** and **action-phase jump**

LINEAR

RH(C

 ❑Measurement and correction of IR coupling(roll in IR triplets) → operations
 ❑Good agreement with cold mass alignment
 ❑Measurement of triplet gradient errors

NONLINEAR

 Measurement of bump amplitude dependent tune shifts in IP8 IP2
 Mathematica analysis to derive multipoles
 Correction of tune shift in IR8 (octupole and sextupole)

[Pilat, Koutchouk, Ptitsyn, Cardona]

Beam-beam studies

RHIC operates in a strong-strong beam-beam regime

Measure beam-beam tune shift with PLL (cogged, uncogged, cogged again) — [W.Fischer, P. Cameron]

 Experimental evidence of coherent beam-beam modes in a hadron collider (dedicated experiment)
 [Fischer, Pilat, Sen, Syphers, Vogt]

RHC

Plans 2003 – RHIC retreat

RHIC Retreat March 2002. http://www.c-ad.bnl.gov/RHIC/retreat2002

- **Goals:**
- Set realistic goals for machine and experiments in 2003
 Set priorities for shutdown 2002
 Review run 2001 experience

Outcome: Performance goals for 2003 Set of guidelines for operations in 2002, for example: truly weekly planning of activities polarization development time for AGS start operations with tune feedback flattop configurations (experiments magnets)

2003: Performance Goals

	Performance goals						T.Roser			
Mode	# bunches	Ions/bunch [×10 ⁹]	β* [m]	Emi [π	Cmittance [πμm]		eak ² S ⁻¹]	L _{ave} (stor [cm ⁻² s ⁻¹	e) L _{ave} (week)] [week ⁻¹]	
Au-Au	56	1	1	15	5-40 1		10 ²⁶	3×10 ²⁶	70 (µb) ⁻¹	
(p ↑- p↑)*	112	100	1	,	5 16×1		10 ³⁰	10×10 ³⁰	⁰ 2.8(pb) ⁻¹	
d-Au	56	100(d), 1(Au)	2	,	20	0 5×10		2×10 ²⁸	5 (nb) ⁻¹	
Si-Si	56	7	1	20		5×1	0 ²⁸	2×10 ²⁸	5 (nb) ⁻¹	
Minimum and maximum expected performance										
Mode	L _{ave} (week) [week ⁻¹]	Int. Lumi. 2 modes	Int. Lu 3 mod	mi. L _{ave} (w es [wee]		veek) k ⁻¹]	Int. Lumi. 2 modes		Int. Lumi. 3 modes	
Au-Au	24(µb) ⁻¹	168(µb) ⁻¹	72(μb) ⁻¹		70 (µb)-1		490(µb) ⁻¹		210(µb) ⁻¹	
(p ↑- p↑)*	0.3(pb) ⁻¹	2.1(pb) ⁻¹	0.9(pb) ⁻¹		2.8(pb) ⁻¹		19.6(pb) ⁻¹		8.4(pb) ⁻¹	
d-Au	?	?	?		5 (nb) ⁻¹		35 (nb) ⁻¹		15 (nb) ⁻¹	
Si-Si	?	?	?		5 (n ł	b) ⁻¹	35	(nb) ⁻¹	15 (nb) ⁻¹	

2003 – running scenarios

Estimate for integrated luminosity for 29 week FY2003 run:

■ 4 weeks cool down, 1 week warm-up, 2 weeks setup (for each mode),
3 weeks ramp up (for each mode): →

29 weeks of cryo ops.: 2 modes: 7 weeks at "final" luminosity / mode

3 modes: 3 weeks at "final" luminosity / mode

4 modes: 1 week at "final" luminosity / mode

Running modes considered for 2003:□d-Au at 100 GeV/u□Polarized pp at 100 GeV□Au-Au at 100 GeV/u□Au-d at 100 GeV/u□Polarized pp at 250 GeV□Au-Au at different energies

RHIC

NATIONAL LABORATORY

Possible:

□D-Au at 100 GeV □Polarized pp at 100 GeV

Decision in summer 2002 (RBUP's, PAC...)

Heavy Ion Luminosity Upgrades

Initial emittance (95%) $\pi\mu$ m Final emittance (95%) $\pi\mu$ m Beta function at IR [m] Number of bunches Bunch population [10⁹] Beam-beam parameter per IR Angular size at IR [µrad] RMS beam size at IR [µm] Peak luminosity [10²⁶ cm⁻² s⁻¹] Average luminosity [10²⁶ cm⁻² s⁻¹]

RDM	RDM+	RHIC II
15	15	15
40	40 →	3
2.0	1.0	$1.0 \rightarrow 0.5$
56 →	112	112
1	1	1
0.0016	0.0016	0.004
108	153	95
216	150	95
8	32	83
2	8	70

RHIC II includes **electron beam cooling** and assumes 5 hr stores since burn-off is high RDM and RDM+ assume 10 hr stores

The RHIC Electron Cooling Project

□Bunched electron beam requirements for 100 GeV/u gold beams: E = 54 MeV, $\langle I \rangle \leq 100$ mA, electron beam power: ≤ 5 MW!

□Requires **high brightness**, high **power**, **energy recovering superconducting linac**, almost identical to IR FEL at TJNAF

□Has several applications at BNL: **PERL**, **eRHIC** (EIC)

□<u>Timeline</u>: 3Y **test facility** operative 5Y installed in RHIC

[I.Ben-Zvi et al. "e-cooling for RHIC" PAC2001"]

eRHIC – electron ion collisions

10 GeV e- 100 GeV/u ionsElectron cooling – polarized e3 options being studied:

- $\Box \underline{\text{e-ring}} + \underline{\text{ion ring}} \\ 0.5 \text{ A polarized e- beam}$
- □ <u>ERL e- linac</u> + <u>ion ring</u> E e- beam 10GW (halo)
- □ <u>ERL e-linac</u> +<u>recycling ring</u>+ <u>ion ring</u> (1000 turns)→10 MW linac

1-2 IR's with electrons-ion collisions keep Au experiments running in the other IR's

http://www.c-ad.bnl.gov/eicaw

Proton Luminosity Upgrades

	RHIC Spin	RHIC II	Future Upgrade
Emittance(95%) πµm	20	12	12
Beta function at IR [m]	1	1	0.3
Number of bunches	112	112	336
Bunch population [10 ¹¹]	2	2	2
Beam-beam parameter per IR	0.007	0.012	0.012
Angular size at IR [µrad]	112	86	157
RMS beam size at IR [µm]	112	86	47
Luminosity $[10^{32} \text{ cm}^{-2} \text{ s}^{-1}]$	2.4	4.0	40.0

RHIC II : Beam-beam tune shift limited for 2 interaction regionsFuture Upgrade:Mini-beta quads and more bunchesWill also require major detector up are detector.

- Successful 2001 operations for RHIC
 design energy and luminosity for Au-Au collisions
 PP collision at 100 GeV 25% polarization
- **Run 2003** starts in November 2002
- Luminosity upgrade scenarios are planned for heavy-ion and polarized proton operations
 (RHIC electron cooling project R&D underway)
- RHIC is well positioned to play a major role in research in this and into the next decade

RHC

