Neutrino Factory in Japan: based on FFAG

Yoshiharu Mori (KEK)

- 1. Introduction
- 2. Scenario of muon acceleration
- 3. Neutrino Factory based on FFAG
- 4. Summary

Introduction

What is "Neutrino Factory"? High-intensity & high-energy neutrino source based on muon storage ring neutrino energy: few GeV - several 10 GeV muon decay in storage ring : $\mu^{+} \rightarrow \overline{\nu}_{\mu}, \nu_{\mu} = \mu^{-} \rightarrow \nu_{\mu}, \overline{\nu}_{e}$ **Physics Oscillation : MNS matrix(U_{MNS})** 1) θ_{13} 2) sign of Δm_{32}^2 3) CP violation in neutrino sector Neutrino yield $\dots > 10^{20} \sim 10^{21}$ vs/year/straight sec.

Why Neutrino Factory in Japan?

1 Neutrino Physics in Japan Super-KAIMIOKANDE(atomospheric neutrino) Long Base-line (KEK 12-GeV PS to KAMIOKA) K2K

2 High Intensity Proton Accelerator Project Proton Driver beam power > 1 MW 50-GeV PS Joint Project KEK/JAERI

Muon Suvival for various accelerating filed

Neutrino Factory Scenario

Linear accelerator based scenario (PJK Scenario) *high accel. field gradient :E > 5 MV/m (L ~ 4 km) High frequency rf (f > 100 MHz)

- pro : muon survival >85%
- con : small acceptance (e_{H,V} & dp/p) need "phase rotation & muon cooling" high cost

Neutrino Factory Scenario

Ring accelerator scenario (FFAG Scenario) *low accel. field gradient: E ~ 0.5-1 MV/m # of turns ~>30 turns (R ~0.15 km): low frequency rf (f~ 5-10 MHz) pro: large acceptance ($\epsilon_{H,V}$ & dp/p) no-need "phase rotation & muon cooling" low cost (*depend on scheme) muon survival ~50%, however, con: large acceptance may compensate it. *large acceptace & quick acceleration?*

How large acceptqance is needed? Muon & pion yield with fixed trans. acceptance

assumed acceptance: ε_n(100%)=0.03πm.rad dp/p = +- 50% proton driver : JHF 50GeV MR (0.75MW)

peak yield 0.3 muons/proton p_µ = 0.4~1.5GeV/C

Accelerator Scenario - FFAG Option

Direct Acceleration by Low Frequency RF No Phase Rotation, No Cooling

∆*p/p=+-50%@300MeV/c*

*A*_n=0.03π*m.rad*

~ 0.3muons / proton JHF 50-GeV Proton Driver

Accelerator Scenario - FFAG Option

FFAG(Fixed-Field Alternating Gradient) Accelerator (1) Large momentum acceptance △*p*/*p* ~ +- 50% or more (2) Large aperture *A_n* ~ 0.03 π*m.rad* @ 300MeV/C (3) Scaling type $p/p_0 \sim (r/r_0)^{k+1}$: tunes = const., $\xi=0$, $\alpha = 1/(k+1) = \text{const.}$ **in higher orders MCF** Low freq. rf : phase slip --> negligible

(*Non-scaling type)

FFAG Accelerator

idea --> 50's (Ohkawa, Symon,Kolomenski) proton acceleration --> PoP FFAG (KEK),2000

1) fixed magnetic field
2) AG focusing
3) synchrotron osc.

* large acceptance (trans. & long.) * quick acceleration

PoP FFAG synchrotron

Accelerator Scenario - FFAG Option

Neutrino Factory in Japan - FFAG Scenario

FFAG Parameters

momentum(GeV/c)	0.3~1	1~3	3~10	10~20
number of sector	16	32	64	120
k number	15	63	220	280
average radius(m)	10	30	90	200
max. B field(T)	2.8	3.6	5.4	6.0
tune	5.826	13.704	27.911	22.333
	4.590	4.048	4.089	6.333
drift length(m)	2.120	3.299	5.046	5.668
BF length(m)	1.065	1.575	2.169	2.685
BD length(m)	0.367	0.544	0.813	1.062
orbit excursion(m)	0.77	0.52	0.813	0.49
transition γ	4	8	14.9	16.8

FFAG 10 - 20 GeV

Aperture of FFAG: Is it large with large k?

larger ring --> large k --> large non-linear field?

$$B = B_0 \left(\frac{r}{r_0}\right)^k = B_0 \left(1 + \frac{k}{r_0}x + \frac{k(k-1)}{2!r_0^2}x^2 + \cdots\right)$$
$$\cong B_0 \left(1 + (\frac{k}{r_0}x) + \frac{1}{2!}(\frac{k}{r_0}x)^2 + \cdots\right)$$

$$W = \frac{x^2}{\beta}$$
$$\cong x^2 \left(\frac{k}{r_0 N}\right) = \frac{r_0}{k N} \left(\frac{k}{r_0} x\right)^2 \quad .$$

 r_0

Dynamic aperture depends mostly on phase advance/cell!

Dynamic Aperture of FFAG ring (0.3-1GeV/c)

Longitudinal motions in the FFAG rings

and the second second

Parameters

FFAG		Linac		
no phase rotation, no cooling		USA:study1		
proton drive	r 50GeV(1-4MW)	proton driver	50GeV(1-4MW)	
Accelerator		phase rotation	80MeV/c	
FFAG-0(PRISM) 0.3-1GeV		cooling	100m	
FFAG-1	1-3 GeV	acceleration		
FFAG-2	3-10 GeV	linac	2GeV	
FFAG-3	10-20 GeV	FFAG	2-11GeV	
storage ring	<i>C~800m</i>	RCL	11-20(50)GeV	
Intensity		storage ring Intensity	<i>C~1000m</i>	
phase 1 3x10 ²⁰ muon/y(1MW)		phase 1 10 ²⁰	1 10 ²⁰ muon/y (1MW)	
phase 2 1.	2x10 ²¹ muon/y(4MW)	phase 2 4x10	²⁰ тиоп/у (4МИ	
		(*USA Studv2 ~5 times)		

Hardware R&D

1) Low freq. & high gradient RF system :1MV/m, 5-10MHz a)SY20 ferrite cavity b)Ceramic gap cavity US-Japan collaboration c)Air gap cavity

rf power : total peak power ~750MW (air gap cavity) ave. rf power ~1MW

Hardware R&D

rf amplifier & power supply: 100kW anode dissipation tetrode --> ~1MW in burst mode operation anode power supply depends on ave. rf power. in total: 750 + 100km anode diss. betweede

750 x 100kw anode diss. tetrode 1MW anode power supply

Hardware R&D

Superconducting Magnet for FFAG

Magnetic field configuration of SC magnet

θ direction

radial direction

FFAG based neutrino factory : feasible

R&D 1)optimization FFAG lattice (inj. ext.) hybrid rf (low & high freq.) 2)beam simulation (trans. & long.) 3)hardware: rf cavity, sc-magnet etc.