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Abstract

Fast and efficient numerical-analytical approach is pro-
posed for modeling complex collective behaviour in ac-
celerator/plasma physics models based on BBGKY hier-
archy of kinetic equations. Our calculations are based
on variational and multiresolution approaches in the bases
of polynomial tensor algebras of generalized coherent
states/wavelets. We construct the representation for hier-
archy of reduced distribution functions via the multiscale
decomposition in high-localized eigenmodes. Numerical
modeling shows the creation of different internal coherent
structures from localized modes, which are related to sta-
ble/unstable type of behaviour and corresponding pattern
(waveletons) formation.

1 INTRODUCTION

The kinetic theory describes a lot of phenomena in
beam/plasma physics which cannot be understood on the
thermodynamic or/and fluid models level. We mean first of
all (local) fluctuations from equilibrium state and collec-
tive/relaxation phenomena. It is well-known that only ki-
netic approach can describe Landau damping, intra-beam
scattering, while Schottky noise and associated cooling
technique depend on the understanding of spectrum of lo-
cal fluctuations of the beam charge density [1]. In this
paper we consider the applications of a new numerical-
analytical technique based on wavelet analysis approach
for calculations related to description of complex collec-
tive behaviour in the framework of general BBGKY hierar-
chy. The rational type of nonlinearities allows us to use our
results from [2]-[15], which are based on the application
of wavelet analysis technique and variational formulation
of initial nonlinear problems. Wavelet analysis is a set of
mathematical methods which give us a possibility to work
with well-localized bases in functional spaces and provide
maximum sparse forms for the general type of operators
(differential, integral, pseudodifferential) in such bases. It
provides the best possible rates of convergence and mini-
mal complexity of algorithms inside and as a result saves
CPU time and HDD space. In part 2 set-up for kinetic
BBGKY hierarchy is described. In part 3 we present ex-
plicit analytical construction for solutions of hierarchy of
equations from part 2, which is based on tensor algebra ex-
tensions of multiresolution representation and variational
formulation. We give explicit representation for hierarchy
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of n-particle reduced distribution functions in the base of
high-localized generalized coherent (regarding underlying
affine group) states given by polynomial tensor algebra of
wavelets, which takes into account contributions from all
underlying hidden multiscales from the coarsest scale of
resolution to the finest one to provide full information about
stochastic dynamical process. So, our approach resembles
Bogolubov and related approaches but we don’t use any
perturbation technique (like virial expansion) or lineariza-
tion procedures. Numerical modeling shows the creation
of different internal (coherent) structures from localized
modes, which are related to stable (equilibrium) or unstable
type of behaviour and corresponding pattern (waveletons)
formation.

2 BBGKY HIERARCHY

Let M be the phase space of ensemble of N particles
(dimM = 6N ) with coordinates xi = (qi, pi), i =
1, ..., N, qi = (q1

i , q2
i , q3

i ) ∈ R3, pi = (p1
i , p

2
i , p

3
i ) ∈

R3, q = (q1, . . . , qN ) ∈ R3N . Individual and collective
measures are:

µi = dxi = dqipi, µ =
N∏

i=1

µi (1)

Distribution function DN (x1, . . . , xN ; t) satisfies Liou-
ville equation of motion for ensemble with Hamiltonian
HN :

∂DN

∂t
= {HN , DN} (2)

and normalization constraint
∫

DN(x1, . . . , xN ; t)dµ = 1 (3)

where Poisson brackets are:

{HN , DN} =
N∑

i=1

(∂HN

∂qi

∂DN

∂pi
− ∂HN

∂pi

∂DN

∂qi

)
(4)

Our constructions can be applied to the following general
Hamiltonians:

HN =
N∑

i=1

( p2
i

2m
+ Ui(q)

)
+

∑

1≤i≤j≤N

Uij(qi, qj) (5)

where potentials Ui(q) = Ui(q1, . . . , qN ) and Uij(qi, qj)
are not more than rational functions on coordinates. Let L s
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and Lij be the Liouvillean operators (vector fields)

Ls =
s∑

j=1

(pj

m

∂

∂qj
− ∂uj

∂q

∂

∂pj

)
−

∑

1≤i≤j≤s

Lij (6)

Lij =
∂Uij

∂qi

∂

∂pi
+

∂Uij

∂qj

∂

∂pj
(7)

For s=N we have the following representation for Liouvil-
lean vector field

LN = {HN , ·} (8)

and the corresponding ensemble equation of motion:

∂DN

∂t
+ LNDN = 0 (9)

LN is self-adjoint operator regarding standard pairing on
the set of phase space functions. Let

FN (x1, . . . , xN ; t) =
∑

SN

DN (x1, . . . , xN ; t) (10)

be the N-particle distribution function (SN is permutation
group of N elements). Then we have the hierarchy of re-
duced distribution functions (V s is the corresponding nor-
malized volume factor)

Fs(x1, . . . , xs; t) = (11)

V s

∫
DN(x1, . . . , xN ; t)

∏

s+1≤i≤N

µi

After standard manipulations we arrived to BBGKY hier-
archy [1]:

∂Fs

∂t
+ LsFs =

1
υ

∫
dµs+1

s∑

i=1

Li,s+1Fs+1 (12)

It should be noted that we may apply our approach even to
more general formulation than (12). Some particular case
is considered in [16].

3 MULTISCALE ANALYSIS

The infinite hierarchy of distribution functions satisfying
system (12) in the thermodynamical limit is:

F = {F0, F1(x1; t), F2(x1, x2; t), . . . , (13)

FN (x1, . . . , xN ; t), . . .}
where Fp(x1, . . . , xp; t) ∈ Hp, H0 = R, Hp =
L2(R6p) (or any different proper functional space), F ∈
H∞ = H0 ⊕ H1 ⊕ . . . ⊕ Hp ⊕ . . . with the natural Fock-
space like norm (of course, we keep in mind the positivity
of the full measure):

(F, F ) = F 2
0 +

∑

i

∫
F 2

i (x1, . . . , xi; t)
i∏

�=1

µ� (14)

First of all we consider F = F (t) as function on time
variable only, F ∈ L2(R), via multiresolution decompo-
sition which naturally and efficiently introduces the infinite
sequence of underlying hidden scales into the game [17].
Because affine group of translations and dilations is inside
the approach, this method resembles the action of a micro-
scope. We have contribution to final result from each scale
of resolution from the whole infinite scale of spaces. Let
the closed subspace Vj(j ∈ Z) correspond to level j of res-
olution, or to scale j. We consider a multiresolution anal-
ysis of L2(R) (of course, we may consider any different
functional space) which is a sequence of increasing closed
subspaces Vj : ...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... satis-
fying the following properties: let Wj be the orthonormal
complement of Vj with respect to Vj+1: Vj+1 = Vj

⊕
Wj

then we have the following decomposition:

{F (t)} =
⊕

−∞<j<∞
Wj (15)

or in case when V0 is the coarsest scale of resolution:

{F (t)} = V0

∞⊕

j=0

Wj , (16)

Subgroup of translations generates basis for fixed scale
number: spank∈Z{2j/2Ψ(2jt− k)} = Wj . The whole ba-
sis is generated by action of full affine group:

spank∈Z,j∈Z{2j/2Ψ(2jt − k)} = (17)

spank,j∈Z{Ψj,k} = {F (t)}

Let sequence {V t
j }, V t

j ⊂ L2(R) correspond to multireso-
lution analysis on time axis, {V xi

j } correspond to multires-
olution analysis for coordinate xi, then

V n+1
j = V x1

j ⊗ . . . ⊗ V xn

j ⊗ V t
j (18)

corresponds to multiresolution analysis for n-particle dis-
tribution fuction Fn(x1, . . . , xn; t). E.g., for n = 2:

V 2
0 = {f : f(x1, x2) = (19)

∑

k1,k2

ak1,k2φ
2(x1 − k1, x2 − k2), ak1,k2 ∈ �2(Z2)},

where φ2(x1, x2) = φ1(x1)φ2(x2) = φ1 ⊗ φ2(x1, x2),
and φi(xi) ≡ φ(xi) form a multiresolution basis corre-
sponding to {V xi

j }. If {φ1(x1 − �)}, � ∈ Z form an or-
thonormal set, then φ2(x1−k1, x2−k2) form an orthonor-
mal basis for V 2

0 . Action of affine group provides us by
multiresolution representation of L2(R2). After introduc-
ing detail spaces W 2

j , we have, e.g. V 2
1 = V 2

0 ⊕W 2
0 . Then

3-component basis for W 2
0 is generated by translations of

three functions

Ψ2
1 = φ1(x1) ⊗ Ψ2(x2), Ψ2

2 = Ψ1(x1) ⊗ φ2(x2),
Ψ2

3 = Ψ1(x1) ⊗ Ψ2(x2) (20)
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Also, we may use the rectangle lattice of scales and one-
dimentional wavelet decomposition :

f(x1, x2) =
∑

i,�;j,k

< f, Ψi,� ⊗Ψj,k > Ψj,� ⊗Ψj,k(x1, x2)

where bases functions Ψi,� ⊗ Ψj,k depend on two scales
2−i and 2−j . After constructing multidimension bases we
apply one of variational procedures from [2]-[16]. As a
result the solution of equations (12) has the following mul-
tiscale/multiresolution decomposition via nonlinear high-
localized eigenmodes

F (t, x1, x2, . . .) =
∑

(i,j)∈Z2

aijU
i ⊗ V j(t, x1, x2, . . .)

V j(t) = V j,slow
N (t) +

∑

l≥N

V j
l (ωlt), ωl ∼ 2l (21)

U i(xs) = U i,slow
M (xs) +

∑

m≥M

U i
m(ks

mxs), ks
m ∼ 2m,

which corresponds to the full multiresolution expansion
in all underlying time/space scales. Formulae (21) give
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Figure 1: 6-eigenmodes representation.

us expansion into the slow part Ψslow
N,M and fast oscillating

parts for arbitrary N, M. So, we may move from coarse
scales of resolution to the finest one for obtaining more de-
tailed information about our dynamical process. The first
terms in the RHS of formulae (21) correspond on the global
level of function space decomposition to resolution space
and the second ones to detail space. In this way we give
contribution to our full solution from each scale of res-
olution or each time/space scale or from each nonlinear
eigenmode. It should be noted that such representations
give the best possible localization properties in the corre-
sponding (phase)space/time coordinates. In contrast with
different approaches formulae (21) do not use perturbation
technique or linearization procedures. Numerical calcula-
tions are based on compactly supported wavelets and re-
lated wavelet families and on evaluation of the accuracy
regarding norm (14):

‖FN+1 − FN‖ ≤ ε (22)

Fig. 1 demonstrates 6-scale/eigenmodes (waveletons) con-
struction for solution of equations like (12). So, by us-

ing wavelet bases with their good (phase) space/time local-
ization properties we can construct high-localized wavele-
ton structures in spatially-extended stochastic systems with
collective behaviour.
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