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Abstract

Using FFAGs for the arcs of recirculating accelerators
has the potential to achieve significant cost savings over a
multiple-arc design. However, no FFAG arc will have the
same path length over its entire energy range. This leads to
problems with synchronizing high-frequency RF with the
beam on each pass. It has been demonstrated [1] that in
fact a reference particle can be accelerated in such a system
for an arbitrary number of turns, although the amount of
linac required for a given energy gain never falls below a
certain nonzero value for a larger number of turns. Here
we examine that system in more generality, and begin to
address longitudinal phase space acceptance.

1 LATTICE DESCRIPTION

For the purposes of this paper, a recirculating accelerator
consists of an alternating sequence of identical linacs and
arcs. The arcs are identical in that each has the same path
length as a function of energy. The linacs are identical in
that they all have the same voltage and the same phase. By
“the same phase,” I first mean that the phase of the RF does
not change from one turn to the next. Second, if there are
M linacs in the recirculating accelerator, the phase of one
linac differs from that of the previous linac by 2πk/M for
some fixed integer k.

There are two extremes in this design: one is the race-
track design, where there are two long parallel linacs con-
nected by arcs; the opposite extreme is a distributed RF sys-
tem, where one has a sequence of short arcs with a single
RF cavity between them. The racetrack design allows one
to attempt to suppress dispersion in the linacs, eliminating
longitudinal-transverse coupling. It is generally difficult to
suppress dispersion over a large energy range, and in ad-
dition, the dispersion suppression may reduce the dynamic
aperture of the system. The distributed RF system allows
longitudinal-transverse coupling, but maintains a high de-
gree of symmetry, in principle giving a good dynamic aper-
ture. The longitudinal-transverse coupling may not be so
important, however, since we are on-crest, and the energy
gain does not vary so strongly with time-of-flight (that vari-
ation is what causes the longitudinal-transverse coupling).

The path length in an FFAG arc is often well approxi-
mated as a quadratic function of energy (see Fig. 1 for an
example). It is desirable to minimize the total variation in
the path length over the desired energy range, and so one
generally adjusts the lattice design to place the minimum
of the parabola in the center of the energy range of the arc.
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Figure 1: Path length as a function of energy for a single
6.5 m FFAG cell [2], calculated using COSY INFINITY
[3]. Path length is given as a fraction of a 200 MHz RF
period. The solid line is the exact path length variation, the
dashed line is a quadratic approximation.

Thus, the path length as a function of energy takes the form

∆T

(
2E − Emax − Emin

Emax − Emin

)2

− T0. (1)

∆T should vary very little as T0 is adjusted over a small
range. Adjusting T0 changes the energies for which the par-
ticle will see the same phase betweeen subsequent linacs.
To minimize the relative arc lengthening required to ad-
just T0, one can also adjust k described above (the relative
phase between linacs).

Time-of-flight variation with energy is ignored in the
linacs. Considering the relatively large energies that these
recirculating accelerators are designed for, it is a very good
approximation to distribute any path length variation with
energy in the linacs into the adjacent arcs.

2 EQUATIONS OF MOTION

The equations giving the energy and time-of-flight at the
entrance and exit of the linacs are

En+1 = En + V c(ωτn) (2)

τn+1 = τn + ∆T [u(En+1/∆E) − u0] . (3)

En is the energy after the nth pass through a linac, τn−1

is the time-of-flight relative to the crest in the nth linac
pass, ω is the angular RF frequency, and ∆E is the de-
sired energy gain. c(x) is a 2π periodic function whose
maximum absolute value is 1 and whose integral over one
period is 0, representing the amplitude of the voltage as a
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function of phase. V is the maximum energy gained in the
linac. ∆T [u(p) − u0] is the time of flight in an arc as a
function of energy (it is convenient to define u(p) so that
the difference between its maximum and minimum is 1).
For the path length variation (1), u(p) = 4(p − 1/2)2 and
u0∆T = T0. For a single RF frequency, c(x) = cos(x).
Changing coordinates to xn = ωτn and pn = En/∆E,
(2–3) become

pn+1 = pn + vc(xn) (4)

xn+1 = xn + ∆φ[u(pn+1) − u0] (5)

where v = V/∆E and ∆φ = ω∆T .
Say we want to accelerate from Emax to Emin in N turns.

Then p0 = 0 and pN = 1. The problem that we wish
to solve is given these endpoint conditions, minimize v by
varying x0, the phase at which you enter the first linac, and
u0. This solution will depend only on ∆φ and N .

2.1 Continuous Approximation

Make a continuous approximation to Eqs. (4-5) [1]:

dp

dξ
= wc(x)

dx

dξ
= u(p) − u0, (6)

where w = V/(∆Eω∆T ) and ξ = nω∆T . The discrete
problem is re-formulated to be that w is minimized sub-
ject to the constraints that p(0) = 0 and p(Nω∆T ) = 1
by varying u0 and x(0). This solution depends only on
Nω∆T . Thus, if the continuous approximation approxi-
mates the discrete system well, then V will be ∆Eω∆T
times a quantity depending only on Nω∆T .

One can eliminate ξ from (6) and integrate to get

w[s(x) − s(x0)] = U(p) − u0p, (7)

where

s(x) =
∫ x

0

c(z) dz U(p) =
∫ p

0

u(z) dz. (8)

From this we can show that

w �
sup

p∈[0,1]

[U(p) − u0p] − inf
p∈[0,1]

[U(p) − u0p]

sup
x

[s(x)] − inf
x

[s(x)]
. (9)

Minimizing the right hand side over u0 demonstrates that
there is a nonzero lower bound on w. For example, for the
path length variation (1), the numerator of (9) is 1/12, and
is reached when u0 = 1/4. When c(x) = cos(x), the de-
nominator is 2, and thus w is at least 1/24. Setting w to the
value computed on the right-hand side of (9) (even without
minimizing with respect to u0) and x0 such that s(x0) is
the minimum value of s (−π/2 when c(x) = cos x), then
if U(p) − u0p reaches an extremum at an interior value of
p = p1, then x = x1 and p = p1 are a fixed point of
(6), where x = x1 solves (7) when p = p1 (u and c are
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Figure 2: Phase as a function of linac pass when ∆φ = 1
and N = 50.

assumed to be differentiable). This fixed point must be un-
stable. Thus, it takes an infinite amount of time to reach
that fixed point. Hence, the lower bound on w is the limit
of the solution for w as Nω∆T → ∞. As we approach
that limit, for w minimized over x0, w approaches the right
hand side of (9) from above, and x0 approaches a value
which minimizes s(x).

This helps us understand the behavior in the discrete
case: for large N , V will not go to zero but will ap-
proach a nonzero value which is proportional to ∆Eω∆T .
The value of V/(∆Eω∆T ) is roughly only a function of
Nω∆T . For large N , the bunch will spend many turns at a
point where c(x) is nearly zero, gaining very little energy.
All these statements are weakly dependent on what ω∆T
is, since the continuous approximation is not exact.

In the case of the distributed RF system, ∆φ is small
and N is very large, and the discrete equations are a very
good approximation to the continuous ones. For a racetrack
system, however, it is far from clear that the approximation
is good. Since ω∆T is relatively large, the change of x in
one step can be large, making it questionable whether the
continuous approximation is really very good. However,
we will subsequently see that for a large number of turns, a
large fraction of the steps occur at points where the change
in xn is small, and xn is large and therefore the change in
pn is also small. The continuous approximation thus turns
out to give the correct results for large numbers of turns
both qualitatively and nearly quantitatively as well.

3 EXAMPLE

We now find the minimum-v solution of Eqs. (4-5) for
∆φ = 1. This is a relatively large phase swing: remem-
ber that the phase errors accumulate, and so after only 4
steps with this phase error, one would certainly be decel-
erating. This example is more appropriate for a racetrack
configuration: the phase swing per arc would be orders of
magnitude smaller for a distributed RF system (but corre-
spondingly more linac passes would be required).
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Figure 3: Linac voltage versus the number of linac passes.
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Figure 4: Initial phase versus the number of linac passes.

If one makes 50 linac passes for this system and per-
forms the aforementioned optimization, the phase as a
function of turn number is shown in Fig. 2. Note that the
reference particle crosses the crest three times; this is re-
lated to the parabolic shape of the path length. The particle
spends most of its time at the two turning points in phase
(turns 8-18 and 32-42); these are the points where the path
length error is near zero. Due to the large phase at this
point, the particle is not gaining very much energy, and so
remains at the point where the path length is near zero for
a long time. This is what allows the particle can spend an
arbitrary number of turns in this system.

Figure 3 shows the voltage as a function of the number
of linac passes, and Fig. 4 shows x0. For large numbers
of turns, these (including φ0, not shown) do appear to be
approching the large N limits given above. While it is not
clear that x0 → −π/2 in Fig. 4, from Fig. 2, one can see
that the maximum phase swing is slightly larger than −x0.
The fact that ∆φ is large causes this difference from the
continuous approximation. It is the regime near the turning
points in phase that approaches the continuous approxima-
tion. It turns out that the voltage limit as N → ∞ is very
slightly less than what is found in the continuous approxi-

Figure 5: Initial phase space that is accepted in a 8 linac
pass system. Each color represents a band of ±0.01 in pN .

Figure 6: Initial phase space that is accepted in a 24 linac
pass system.

mation; the difference is also due to the the finite ∆φ.
Finally, Figs. 5 and 6 demonstrate how the acceptance

varies with the number of turns. For fewer turns, a large
region of phase space is accepted; what one sees at 8 linac
passes is very close to what one expects from on-crest ac-
celeration. For a large number of linac passes (24 here),
most everything that is accepted ends up within a small
band of the reference momentum at the final energy. In
fact, while it appears that there is a smaller total accep-
tance for more turns, the phase space area ending up within
a small energy band at the end is mmuch larger for more
turns. The analysis of acceptance is still very preliminary,
and must be studied more thoroughly.
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