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Abstract

To control the nonlinear effects of long-range beam-
beam interactions due to a large number of non-localized
parasitic collisions, we propose a global compensation
scheme for long-range beam-beam interactions by using
magnetic multipole correctors based on a minimization of
nonlinearities in one-turn maps of a storage ring collider.
Simulation study on a test model that is similar to LHC
showed that this global compensation of the long-range
beam-beam interactions is effective in increasing the dy-
namic aperture and improving the linearity of the phase-
space region occupied by beams.

1 INTRODUCTION

In large storage ring colliders such as LHC and Teva-
tron, the long-range beam-beam interaction could be a ma-
jor factor that reduces the beam lifetime and limits the lu-
minosity. For LHC, wire compensation scheme has been
proposed to compensate the long-range beam-beam pertur-
bations due to parasitic collisions inside interaction regions
[1]. Simulation studies showed that the wire compensation
is very effective to such localized long-range beam-beam
perturbations [2, 3]. In the case of multi-bunches opera-
tion in Tevatron, however, serious long-range beam-beam
effects are due to many parasitic beam collisions that are
distributed around the ring. For such non-localized long-
range beam-beam perturbations, it is difficult to apply the
wire compensation scheme. The electron-beam compen-
sation of beam-beam tune spread, on the other hand, has
been developed for the elimination of the bunch-to-bunch
tune variation due to the long-range beam-beam interac-
tions in Tevatron RUN IIB [4]. The nonlinear beam-beam
perturbations due to the parasitic collisions could, how-
ever, still pose a serious problem that causes a beam-size
growth and limits the luminosity even after the elimination
of the bunch-to-bunch tune variation. Note that the use of
the electron-beam compensation to reduce the beam-beam
tune spread within a bunch may not improve and could even
damage the beam stability [5]. In order to control adverse
effects of long-range beam-beam interactions in such cases
involving a large number of non-localized parasitic colli-
sions, we propose a new compensation scheme: the global
compensation of long-range beam-beam interactions by us-
ing multipole correctors based on a minimization of nonlin-
earities in one-turn maps of a storage ring collider.
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2 GLOBAL COMPENSATION SCHEME

Without beam-beam interactions, the nonlinear beam dy-
namics in a storage ring can be described by a one-turn
map that contains all global information of nonlinearities
in the system. By minimizing nonlinear terms of a one-turn
map order-by-order with a few groups of multipole correc-
tors, one can reduce the nonlinearity of the system globally
[6, 7]. To include long-range beam-beam interactions into
the map for the global compensation, one should recognize
that a large beam separation is typical at parasitic beam col-
lisions. In both LHC and Tevatron, for example, the beam
separation at parasitic collisions is in a scale of 10σ, where
σ is the nominal beam size. In the phase-space region occu-
pied by beams, therefore, the long-range beam-beam inter-
actions can be approximated with the strong-weak formula
that can further be expanded into a Taylor series around the
beam separation and be included into the one-turn map for
the global compensation of the nonlinearities of the system.

Considering round Gaussian beams, the momentum
kicks in transverse phase space due to the long-range beam-
beam interaction can be written as
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where �r is transverse coordinate and �r0 the horizontal and
vertical beam separation. The kick strength G0 is related
to the beam-beam parameter ξ by G0 = 8πσ∗2ξ/β∗ where
σ∗ and β∗ are the nominal beam size and beta function at
interaction point. In order to easily computer the Taylor
expansion of ∆�p with our code, we rewrite ∆�p as
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With the method of differential algebra [8] or Lie algebra
[9], the expansion of ∆�p can be easily calculated through
�F1, F2, and F3 to any desired order. Neglecting the trans-
verse and longitudinal coupling, a 4-dimensional one-turn
map for the transverse motion including the long-range
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beam-beam interactions can then be calculated in the form
of Dragt-Finn Factorization [9]

M0 = R0 e:H3:e:H4: · · · e:Hn: · · · · (6)

where R0 is a linear transformation and Hn a homogeneous
polynomial of degree n that is associated with the (n-1)th-
order nonlinearity in the map,

Hn =
∑

i+j+k+l=n

u
(n)
ijkl xi pj

x yk pl
y. (7)

The global compensation of nonlinearities in the system is
based on an assumption that with a few groups of multipole
correctors, {Hn | n ≥ 3} can be minimized order-by-order
and, consequently, the dynamics of the system can be sub-
stantially improved. In order to minimize {Hn | n ≥ 3}
with a few parameters of the global correctors, we postu-
late that the nth-order nonlinearity in a one-turn map can be
characterized by the magnitude of its nth-order coefficients
which is defined by

λn =




∑
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[
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1/2

for n ≥ 2.

(8)
Note that in the case of n = 2, sextupoles for the chro-
maticity correction need to be excluded in the calculation
of H3. For convenience, we define the nth-order global
correction when all λi with i = 2, ..., n are minimized
order-by-order using the multipole correctors up to the nth
order.

3 TEST MODEL

The test lattice used in this study is the LHC collision
lattice version 5.0. The fractional parts of horizontal and
vertical tunes are (νx, νy) = (0.31, 0.32). Head-on and
long-range beam-beam interactions at two high luminos-
ity interaction points (IP1 and IP5, β ∗ = 0.5 m) were in-
cluded. The crossing angle of two counter-rotating beams
was taken to be 300 µrad with vertical crossing at IP1
and horizontal at IP5. Both head-on and long-range beam-
beam interactions were calculated with the approximation
of round Gaussian beams (strong-weak model). For the
long-range beam-beam interactions, there are 15 parasitic
collisions on the each side of a IP.

Due to the beam separation and large beta-functions in-
side the inner triplets of IP1 and IP5, nonlinearities of the
collision lattice are dominated by the field errors of super-
conducting high gradient quadrupoles (MQX) of the inner
triplets. In this study, multipole field errors of MQXs up to
the 10th-order were included. The random multipole com-
ponents of MQXs were chosen with Gaussian distributions
centered at zero and truncated at ±3σbn+1 or ±3σan+1

where σbn+1 and σan+1 are the rms value of the nth-order
normal and skew multipole coefficient, respectively. Ref-
erence harmonics of version 2.0 for the Fermilab MQXs

and 3.0 for the KEK MQXs were used [10]. In this study,
we used the mixed configuration of the inner triplets in
which the Fermilab quads are at Q2A and Q2B and the
KEK quads at Q1 and Q3. No local correctors were used
for the field errors in the triplets

To test the global compensation of the nonlinearities in
the ring, we included four corrector packages symmetri-
cally located in arcs. Each corrector package contains thin-
lens kicks with normal and skew components of a desired
multipole corrector.

4 TESTING RESULTS

To study the effect of the global compensation of
the long-range beam-beam interactions, dynamic aper-
ture (DA) of the system without and with the compensa-
tion is calculated with 105-turn 4-dimensional element-by-
element tracking. The tracking has been done without mo-
mentum deviations.

In the case of the nonlinear lattice with the head-on and
long-range beam-beam interactions, we used 50 different
samples of random multiple components generated with
different seed numbers in a random number generator rou-
tine to improve the statistical significance of the simula-
tions. Fig. 1 plots the DA of the 50 random samples with-
out or with the global compensation of the nonlinearities in
the system when ξ = 0.0064. Because in our simulation
we considered beam-beam interactions only in two interac-
tion regions instead of four in LHC, we intentionally used
ξ that is twice as large as the LHC design value in order
to be more close to the LHC situation. Without including
any beam-beam interactions, the smallest and average DA
of these 50 samples is 7.7σ and 9.8σ, respectively. With
both the head-on and long-range beam-beam interactions
but without the global compensation, the smallest and av-
erage DA of the 50 samples is found to be 5.9σ and 6.6σ,
respectively. After the 6th-order global compensation in
this case, the smallest and the average DA increase to 8.3σ
and 9.0σ, respectively, which is a more than 40% gain in
the DA. Moreover, the standard deviation of the DA among
the 50 samples becomes much smaller after the global com-
pensation. This indicates that the system after compensa-
tion is much more linear in the phase-space region inside
the DA.

In this case of the nonlinear lattice with beam-beam in-
teractions, the global compensation reduces overall nonlin-
earities due to both the long-range beam-beam interactions
and nonlinear field errors in the lattice. In order to iso-
late the effect of the global compensation on the long-range
beam-beam interactions, we studied the case that contains
only the beam-beam interactions and otherwise a linear lat-
tice. In this case, the nonlinearities of the system are from
head-on collisions at two IPs and 15 parasitic collisions
on the each side of an IP. Fig. 2 plots the DA as a func-
tion of ξ before and after the global compensation of the
long-range beam-beam interactions. It again shows that the
global compensation improves the DA significantly. With-
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Figure 1: Dynamic aperture of fifty samples of the LHC
collision lattice without or with the global compensation
of the long-range beam-beam interactions. The number in
each block identifies each sample.

Figure 2: Dynamic aperture vs. beam-beam parameter
without or with the global compensation of the long-range
beam-beam interactions in the linear lattice.

out the compensation the DA decreases with ξ quickly. Af-
ter the compensation, such reduction of the DA becomes
much slower as the more nonlinear the system, the larger
the increase of the DA after the compensation.

It should be noted that in all the cases we studied with
either linear or nonlinear lattice the best DA achieved with
the global compensation is always around 9σ that is about
the beam separation at parasitic collision points. This is
understandable since beyond this region the expansions
for the long-range beam-beam interaction in Eqs. (4) and
(5) are invalid and the multipole correctors for the global
compensation could make the system even more nonlin-
ear there. In the case that the original system is already

quite linear, the original DA could be larger than or close
to the beam separation, such as the cases when ξ < 0.005
in Fig. 2, and the global compensation of the long-range
beam-beam interactions will not be effective in improving
the DA. As a matter of fact, in such cases we don’t expect
to do any correction for the DA. In the phase-space region
occupied by beams, on the other hand, the expansion of the
long-range beam-beam interactions in Eqs. (4) and (5) is
always good and, therefore, the compensation is effective
in improving the linearity of the phase-space region near
the closed orbit. An improvement of the linearity in this
region could result in a longer beam life time and a slower
luminosity decay.

5 SUMMARY

The global compensation of long-range beam-beam in-
teractions with multipole correctors based on the mini-
mization of nonlinearities in a one-turn map is an effective
means to suppress long-range beam-beam effects. With a
few groups of multipoles correctors, nonlinear terms in a
one-turn map including the long-range beam-beam interac-
tions can be minimized order-by-order and, consequently,
the nonlinearity of the system in the phase-space region
of interest is significantly reduced. The unique features of
this global compensation scheme includes: (a) long-range
beam-beam effects due to a large number of non-localized
parasitic collisions can be effectively controlled; and (b) the
overall nonlinearities in the system including both the long-
range beam-beam interactions and magnetic field errors in
the lattice can treated systematically with same groups of
multipole correctors.
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