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Abstract

A simulation that uses a technique to obtain tail distribu-
tions is applied to the PLS storage ring. This program
makes it possible to investigate tail distribution in simple
and fast simulation technique. This simulation now in-
cludes rare random processes such as intra-beam scatter-
ing, beam-residua gas scattering and beam-residual gas
bremsstrahlung. An estimate of the beam lifetimes due to
these processes in the PLS storage ring is presented. It
is shown that the estimated beam lifetime shows a good
agreement with operational beam lifetimein PLS.

1 INTRODUCTION

The distribution of particlesin a beam can be divided into
two regions: the core region at small amplitudes and the
tail region at large amplitudes. The core distribution de-
termines the brilliance and the tail distribution affects the
beam lifetime. Since it is not always possible to obtain
the beam distributions by analytical treatments, brute-force
tracking can be used to simulate the beam tails. However, it
requires a tremendous amount of CPU time. In particular,
when rare random processes contribute to beam tails, it is
actually impossible to obtain results with sufficient statis-
tics. Inthat case, it is desirableto investigate the beam tails
by available simulation methods.

A simple and fast simulation method was prposed to ob-
tain the beam tail due to rare random processes[1, 2]. The
simulation method investigates the beam tails caused by
rare and large-amplitude processes from the core distribu-
tion. In this study, a ssmulation method is applied to the
PL S storagering in order to understand the beam tails from
both transverse and longitudinal random processes. To see
the effects of tails, we consider the processes of intra-beam
scattering, beam-residual gas scattering and bema-residual
gas bremsstrahlung. Inthe presence of apertures, these pro-
cesses can a'so lead to a steady loss of particles. The beam
lifetimein the PLS storagering is also estimated in a sim-
ulation by counting the number of the particles extending
beyond the apertures.

2 DESCRIPTION OF THE SIMULATION
METHOD

Suppose that an electron undergoes elastic collision with
residual gas present in a vacuum chamber. We describe a
method which can be used to simulate these processes and
to find the equilibrium distribution.

The simulation starts with n macroparticles that are
given randomly with specified variancesin six-dimensional
phase space. Each macroparticle (i) has a particle number

(N;). Let p be the probability that an electron undergoes
a random process dueing tone turn. Once an electron in
a macroparticle undergoes this process ( the probability P
is N;p), we create a new macroparticle (n + 1)th. This
new macroparticle has one particle (V;+; = 1) and the
macroparticle which has undergone a random process now
has a number of particles (IV; — 1).

We assume that the variation in the random variable due
to a random process is limited to a range between a mini-
muma nd a maximum value. To obtain the variation, first,
calculate the probability (P), and generate one uniform
random number (0 < a < 1). If z < P, arandom process
occurs for the macroparticle. Second, generate a uniform
random number (6+) in the interval between the minimum
value (6..) and the maximum value (6,,,) and one uniform
random number in the interval 0 < y < (do(8)/df) maz,
and compare y and (do(0)/df)g=s, 1S the cross section
corresponding to #'. If y < (do(6)/df)g—p,, a ran-
dom variation corresponding 6, is given to an electron. If

> (do(#)/dR)g=e, , discard these §; and y, and generate
new #; and y until therelationy < (do(0)/db)g—p, holds.

One should find a reasonable minimum cutoff value for
each of therandom processes by testing several values. The
choice of too small a cutoff value reduces the efficiency
of this simulation, without giving any contribution to the
beam tails, and a large cutoff value can result in larger
statistical fluctuations. The equilibrium beam distributions
should not be affected by variations of this parameter.

Each macroparticle in the ssimulation is tracked as fol-
lows:

1. Input We use the following mormalized variablesin
tracking:
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Here, the 07,0, and 3 are nominal values of the trans-
verse beam sizes and betatron function, respectively. E,,,
0%, 02and e (= E — E,) are the nominal energy, nominal
bunch length, relative energy spread and energy deviation
due to arandom process, respectively.

2. Random process When a longitudinal random pro-
cess, such asbeam-residual gas bremsstrahlung, occurs, the
energy of aparticleisvaried by

6I
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where ¢’ is given by values between the minimum cutoff
energy and energy aperture of the beam.
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When a transverse random process, such as beam-
residual gas scattering, occurs, the momenta of a particle
are varied by

P=p-2 g-0-2. @
Uw Uy

Here, the scattering angle () is given by values between
the minimum cutoff angle and the transverse aperture of the
beam. ¢!, = 0, /B, and oyt = 0,3, Where, o, 0,8, and
3, arethe horizontal beam size, the vertical beam size, the
horizontal betatron function and vertical betatron function
at the position where the scattering process occurs, respec-
tively.

3. Betatron oscillation

4. Synchrotron oscillation

5. Synchrotron radiation

3 BEAM TAIL DISTRIBUTIONSDUE TO
THE RARE RANDOM PROCESSES

We performed a weak-strong simulation with 40000
macroparticles in the phase spaces. The results of a simu-
lation for the machine parameters of PLS will be obtained.

3.1 Beam-Residual Gas Bremsstrahlung

An electronwith energy E,, which passes amolecul e of the
residual gas, is deflected in the electric field of the nucleus.
The electron loses its energy due to the radiation emitted
when an electron is deflected. Thereis acertain probability
that a photon with energy w is emitted, producing an elec-
tron with energy E’, where E' + u = E,. Thedifferential
cross section for an energy loss due to bremsstrahlung be-
tween E and E + dE isgiven by [3]
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where Z, o and r. denote the atomic number, the fine-
structure constant and the classical electron radius, respec-
tively. If we expand Eq.(5) by EL and take first-order term,
we obtain

. 4 183 1. du
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We assume that CO molecule uniformly exists in the
ring, so that

N = QUBRC, (7)

where opp is the cross section of the beam-residua gas
bremsstrahlung occuring between the minimum cutoff en-
ergy and maximum energy, c isthe velocity of thelight and
( is the number of gas moleculesin a unit volume, which
isgivenby Q = 2.65 x 102°nP,. Here, n isthe number of
atoms in each gas molecule and P, is the partial pressure
of the gasin pascals.

3.2 Beamresidual gas scattering

The cross section of the elastic scattering with an atom is
given by[3]

do 2771,

— = 1
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where 2 is the solid angle, # the scattering angle, Z
the atomic number, r. the classical electron radius, v the
Lorentz factor and the screening of the atomic electronsis
accounted by the angle 6., which is determined by the
uncertainty principleasf,,;, = Z'/3a/~, wherea isfine-
structure constant. |f we consider the scattering occuring
between angle 6§, and angle 8, in the betatron phase space,
we obtain
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OBS = 271'( ] (9)
We also assume that there is only CO moclecule so that
N = Qopsc. The scattering angle when a particle under-
goes scattering can be obtained as follows. First, calculate
the probability(P) that is scattered at higher angles 6 than
minimum scattering angle 6,, and generate one uniform
random number (0 < x < 1) each turn to decide whether
the scattering occurs or not. If = < P, the scattering angle

is defined by
9=0,/VR, (10)

where R (0< R <1) isthe other uniform random number.

On the other hand, beam-residual gas scattering causes
the changes of momenta of a particle in the horizontal and
the vertical directions. Then, third random number is used
to define azimuthal angle ¢ which is the angle between the
horizontal and scattering planes. To obtain the changes of
momenta due to the scattering in the normalized momenta,
we have to multiply 6, = 6cos¢ and §,= #sin¢ with
thevalue 3, /o, 3, /0y, respectively, taken at the position
where the elastic scattering takes place. It followsthat ver-
tical distribution of abeam is more affected than horizontal
distribution by the elastic beam-residual gas scattering due
totherelation 3, /oy > [ /04.

3.3

Particle scattering in a bunch is called intra-beam scatter-
ing. In the moving frmae of the bunch the motion becomes
purely transverse, neglecting the slow synchrotron motion.
Coulomb scattering will occur for particles having differ-
ent transverse velocities and will transfer their transverse
momenta into longitudinal momenta [4]. The intra-beam
scattering differential cross section for electrons is given
by the Moller formula

Intra-beam scattering

do 4r2 4 3

o (v/c)4[sin49 B sin29]

(11)

where v isthe relative velocity in the c.m system. The mo-
mentum transfer into the longitudinal direction is AP =
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De|cosé|, 2p, beingtherelativetransverse momentum. The
particleislost if YAP > egp Whereegrp isthe momentum
acceptance of the RF. These particlelosses contributeto the
Touschek lifetime.

4 LIFETIME ASA FUNCTION OF
APERTURES

Once a paticle’s amplitude exceeds an aperture, this par-
ticle would be lost. The lost particles are counted at one
position of the ring per turn by comparing amplitudes of
the particle with the apertures. Beam lifetimeis defined by

N
dN

dt

T= (12)

where N isinitial number of particlesin abeam and — %
is number of the particles that exceed each aperture. We
obtain the lifetime by using average 3 in stead of [3(s)
in thering. In our simulation we use vacuum pressure of
0.6 nTorr, 5.5m 3, and 4m 3, as average betatron func-
tion value. Table-2 shows beam lifetimes obtained from
our simulation method. The lifetimes are obtained when
the horizontal, the vertical and the energy apertures are as-
sumed to 1000, 800, and 1.5% (E=15), respectively. The
estimated beam lifetime shows a good agreement with op-
erational beam lifetime in PL S storage ring that is observed
to be 17 hoursin 180 mA of 400 bunches.

5 CONCLUSION

We have established the simulation method to obtain beam
distribution due to the incoherent random processes. This
simulation method provides a simple and fast means to ob-
tain thetail distributions and to estimate the beam lifetimes
dueto variousrandom processesin the storage rings. Beam
tail distributions in the PLS storage ring are estimated by
the simulation method. It is also shown that simulated
beam lifetime agrees well with that of normal operationin
PL S storage ring.
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Figure 1: (a) Horizontal, (b)vertical and (c) energy density
distributionsin alogarithmic scaled obtained from the sim-

ulation method in the PLS storage ring. Beam current is
0.45mA. Vacuum pressurein thering is 0.6 nT orr.

Table 1. Parameters of the PLS storagering

Energy GeV 25
Circumference m 280.56
Natural BunchLength | o, (mm) | 8

Energy Spread 0B 8.5 x10*
Particles/bunch N 2.8 x10°
Beam Current mA 180
Betatron tune vl 14.28/8.18
Synchrotron Tune Vg 0.01
Emittance nm 18.7
Damping time ms(z/z) | 85/4.2
Beam size us(xz/y) | 320/85
Number of bunches 400

Table 2: Simulated lifetimes under the Table-1.

Effect Lifetime
Beam-residual gas scattreing 292 hours
Beam-residual gas bremsstrahlung | 461 hours
Touschek 18 hours
Combined effect 16.5 hours
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