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Abstract

The equilibrium longitudinal particle distribution of a
bunch in an electron storage ring is investigated using a
localized constant wake function and a localized δ wake
function. We also investigated the composite wake effects
on the particle distribution when both the constant wake
and δ wake simultaneously exist in the ring. When moving
around the parameter space, the system can show bifurca-
tion phenomena and transition features between periodic
states, which are not always reversible. We study this be-
havior using the Gaussian approximation and compare the
results with multi-particle tracking. The results show qual-
itative agreement.

1 INTRODUCTION

When a beam circulates around a storage ring, wake
force can be generated by an electromagnetic interaction
between particles in the beam and the vacuum-chamber en-
vironment. The wake force may affect the distribution of
particles in the beam. Various approaches to find the parti-
cle distribution in a beam have been investigated by many
authers. With the Gaussian approximation, Hirata [1] in-
vestigated the distribution of particles in a beam by the
model using a localized wake, which was assumed to be
constant wake. Hirata et al. [2] then showed that the equi-
librium bunch length in electron storage rings could have a
cusp-catastrophe behavior, which had never been observed
for smooth wake forces. Kim et al. [3] showed that sev-
eral stable multi-periodic states in particle distributions of
a beam can also exist for the constant wake.

The aim of this paper is to investigate the dynamic fea-
tures of the beam distribution in the presence of the two
localized wake sources in the ring. Here, we consider δ
wake as well as the constant wake as the sources of the
localized wakes. It seems that it is also interesting to inves-
tiagte the dynamical behaviors on the beam distribution for
the composite cases of the constant wake and the δ wake
in the ring. Characteristic features of the beam distribution
will be investigated in terms of damping time, strength of
wake force and synchrotron tune. We show that a system in
the equilibrium state when two localized wake sources ex-
ist may present the different dynamic states from that when
individual wake source exists.

2 THE MODEL

2.1 Basic Dynamics

We assume for simplicity that there are two localized
wake sources in the ring. More realistic cases in which

the wake function varies from position to position in the
ring can also be studied by a straightforward extension of
the present formalism. It is then convenient to introduce
normalized longitudinal variables,

x1 =
longitudinal displacement

σz
, x2 =

energy deviation
σE

,

where σz is the natural bunch length and σE is the natural
energy spread. The center of the bunch is x1=0 ; x1 > 0
corresponds to the rear part of the bunch. The motion of a
particle in a ring can be modeled as follows:

1) Radiation

(
x′

1 = x1

x′
2 = Λx2 + (1 − Λ2)1/2r̂

)
(1)

2) Wake

(
x′

1 = x1

x′
2 = x2 − φ(x1)

)
(2)

3) Synchrotron oscillation

(
x′

1

x′
2

)
= U

(
x1

x2

)
, (3)

where

U =
(

cos(2πν) sin(2πν)
− sin(2πν) cos(2πν)

)
. (4)

In the above equations, Λ = exp(−2/Te), Te being the
synchrotron damping time divided by the revolution time,
ν the synchrotron tune and r̂ a Gaussian random variable
with zero mean and unit standard deviation.

After one turn in the ring the motion of a particle can be
represented by

(
x′

1

x′
2

)
= U

(
x1

Λx2 + (1 − Λ2)1/2r̂ − φ(x1)

)
. (5)

The wake force is

φ(x1) =
∫ ∞

0

ρ(x1 − u)W (u)du, (6)

where ρ(x) is the longitudinal charge density, which is nor-
malized to unity and W (u) is the longitudinal wake func-
tion multiplied by eQ/σE , where e is the electron charge
and Q the total charge in a bunch.

Here, we consider the constant and δ wake functions for
the sake of simplicity: W (u) = aΘ(u) (Θ being the unit
step function) and W (u) = bδ where a and b signify the
strengths of the wake.
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2.2 The Gaussian Model

Since the wake is assumed to vanish at a short distance
behind the particles which produce it, we can neglect the
multi-turn effects. Generally, we know that particles in
front of a bunch lose energy due to wake fields. In order
to meet this condition we note here that the sign of a and b
in the wake functions should be positive.

Since it is not realistic to observe individual particles, we
are more interested in some statistical quantities, such as

x̄i =< xi >, σij =< (xi − x̄i)(xj − x̄j) >, (7)

and so on, where i, j are 1 or 2, which are the moments of
the phase-space distribution Ψ(x1, x2). In reality, we need
all of the higher order moments to reproduce Ψ(x1, x2).
We always approximate Ψ(x1, x2) as

Ψ =
1

2π
√

detσ
exp[−1

2

∑
i,j

σ−1
i,j (xi − x̄i)(xj − x̄j)] (8)

However, to make the model simple, we assume here that
the distribution function in phase space always remains
Gaussian, even under the influence of the wake force. We
thus need to consider only the first and second order mo-
ments.

With the same treatment used in Ref. [1], each mapping
in Eqs.(1)-(3) can be given as follows:
1) Radiation

x̄′
1 = x̄1, x̄′

2 = Λx̄2, (9)

σ′
11 = σ11, σ′

12 = Λσ12,

σ′
22 = Λ2σ22 + (1 − Λ2) (10)

2) Wake

x̄′
1 = x̄1, x̄′

2 = x̄2− < φ >, (11)

σ′
11 = σ11, σ′

12 = σ12− < (x1 − x̄1)φ) >,

σ′
22 = σ22 − 2 < (x2 − x̄2)φ > + < φ2 > − < φ >2 .

(12)

By further calculations, we obtain for the constant
wake [2]

x̄′
1 = x̄1, x̄′

2 = x̄2 − a/2, (13)

σ′
11 = σ11, σ′

12 = σ12 − a

√
σ11

2
√

π
,

σ′
22 = σ22 − a

√
σ12√
πσ11

+ a2/12. (14)

we also obtain for the δ wake [4]

x̄′
1 = x̄1, x̄′

2 = x̄2 − b

2
√

πσ11
, (15)

σ′
11 = σ11, σ′

12 = σ12,

σ′
22 = σ22 +

b2

2
√

3πσ11

− b2

4πσ11
. (16)

3) Synchrotron oscillation

x̄′
i =

∑
j

Uij x̄j , (17)

σ′
ij =

2∑
h,k=1

UijσhkUjk. (18)

As it can be easily shown, x̄i falls to a period-1 fixed
point for the constant wake as follows:

x̄∞
1 =

−a

2 tan(2πν)
1

1 + Λ
, x̄∞

2 =
a

2
1

1 + Λ
. (19)

x̄i also falls to a period-1 fixed point for the δ wake as
follows:

x̄∞
1 =

−b

2
√

πσ11 tan(2πν)
1

1 + Λ
, x̄∞

2 =
b

2
√

πσ11

1
1 + Λ

. (20)

3 DYNAMICAL BEHAVIOR OF THE
GAUSSIAN MODEL

First, let us consider the dynamical behaviors of the
system for the constant wake function. In the previous
paper [3] we studied the dynamic states in the parame-
ter space set: 0.01 ≤ ν ≤ 0.3, 1 ≤ Te ≤ 1500 and
0 < a ≤ 45, which shows four different behaviors, depend-
ing on the synchrotron tune. The parameter space shows
that several types of equilibrium states such as period-
1, period-2, period-3, period-4 and coexistences of these
states can exist stably depending on the parameters space.

Second, let us consider the dynamical behaviors of the
system for the δ wake function. It is observed that the
only equilibrium state is the period-1 state in the param-
eter ranges of synchrotron tunes from 0.01 to 0.3, T e from
1 to 1000 and b from 0 to 40, irrespective of the initial con-
ditions.

Third, let us consider the dynamical behaviors of the sys-
tem for the composite wake effects (aΘ + bδ) of the con-
stant wake and the δ wake. Here let us consider the case of
ν = 0.1866. When we slowly move the system along the
path from T2 = 22 to Te = 1 in Fig. 1.(a), for the case
of a �= 0, b = 0 and ν = 0.01, it shows period-3 state
until Te = 7. It then becomes the period-2 state at Te = 6
and remains so until Te = 2. It then becomes the period-1
state at Te = 1. When we slowly move the system along
the path from Te = 22 to Te = 1, for the case of a �= 0,
b �= 0 and ν = 0.01, it shows transitions of period-3 state
to period-2 state or period-1 state, as shown in Fig. 1.(b).

In conclusion, when two different kinds of wakes exist
the dynamical behavior of the system can be changed de-
pending on the relative magnitude of wake force strengths
in the two wakes: they may show different stability features
in the parameter space from the case of a single wake while
slowly changing the parameters of the system.

Proceedings of EPAC 2002, Paris, France

1521



4 THE MULTI-PARTICLE TRACKING

In this section, we discuss the reliability of the results
of the model presented above. The model is based on the
Gaussian approximation for particle distribution, whereas
the real distribution can be far from a Gaussian shape. We
thus need a comparison with the multi-particle tracking in
order to see whether the results obtained by the model are
merely those coming from too many simplifications in the
model. We apply Eq. (5) to the phase-space coordinates of
an ensemble of 10000 particles.

First, we investiagte the equilibrium states of the particle
distribution for the case of the constant wake function and
ν = 0.1866. It is observed that the parameter space (Te, a)
is divided into three parts: the period-1 region, where only
the period-1 state is stable; the period-2 region, where only
the period-2 is stable and the period-1-2 region, where the
system chooses either the period-1 or period-2 state accord-
ing to the initial condition. These properties was in accor-
dance with the Gaussian model.

Second, we observe the equilibrium states of the par-
ticle distribution for the case of the δ wake function. It
is shown that the equilibrium state in the multi-particle
tracking presents the period-1 state. It is observed that the
only equilibrium state is the period-1 state in the parame-
ter ranges of synchrotron tunes from 0.01 to 0.3, T e from 1
to 1000 and b from 0 to 40, irrespective of the initial con-
ditions. These properties are also in accordance with the
Gaussian model.

Third, we observe the equilibrium states of the particle
distribution for the ν = 0.1866 due to the composite effects
of the constant wake and the δ wake. It is observed that
the equilibrium states in the multi-particle tracking present
the period-2 or period-1 states. We see that periodic states
which occur in the Gaussian model also appear in multi-
particle tracking.

As a result, the comparison of results of multi-particle
tracking with those of the Gaussian model show qualita-
tive agreement in the existence of the period-doubling bi-
furcation and in the transition between the periodic states
in the presence of δ wake. When moving around parameter
space, the system shows a transition which is not always
reversible. This feature is also shown in analysis of the
Gaussian model and the multi-particle tracking.

5 CONCLUSION

We have found nonlinear behaviors and stable peri-
odic states on the beam distribution in both the Gaussian
model and multi-particle tracking. The model calculations
showed the multi-periodic states in the dynamic states of
a distribution of particles in a beam for the constant wake
function. The model calculations also showed the period-
1 state in the dynamic state of a distribution of particles
in a beam for the δ wake function. These facts are also
confirmed by multi-particle trackings. When both the con-
stant wake and δ wake simultaneously exist, the parameter
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Figure 1: Equilibrium value of σ11 when we slowly move
the system from Te=22 to Te=1. ν=0.01, a=30 and [ b=0
for (a) and b=3 for (b)].

space that the periodic states exist can be changed the un-
der the effect of the δ wake. Overall, the Gaussian model
seems to be useful in describing qualitatively the particle
distribution in the longitudinal phase space. We showed
dynamical states of the equilibrium bunch length and their
stability for a localized constant wake force and a local-
ized δ wake with the Gaussian model in electron storage
rings. Despite the simplification of the Gaussian model,
the model showed good agreement with the multi-particle
tracking results. When the constant wake and the δ wake
exist, it is shown that the transition between the periodic
states can occur depending on the relative strength of the
two wakes. In order to compare with the more realistic ring
parameters, we need to extend our calculation to the case of
many different localized impedances in the ring using our
model.
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